ﻻ يوجد ملخص باللغة العربية
The Large Binocular Telescope Interferometer (LBTI) enables nulling interferometric observations across the N band (8 to 13 um) to suppress a stars bright light and probe for faint circumstellar emission. We present and statistically analyze the results from the LBTI/HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey for exozodiacal dust. By comparing our measurements to model predictions based on the Solar zodiacal dust in the N band, we estimate a 1 sigma median sensitivity of 23 zodis for early type stars and 48 zodis for Sun-like stars, where 1 zodi is the surface density of habitable zone (HZ) dust in the Solar system. Of the 38 stars observed, 10 show significant excess. A clear correlation of our detections with the presence of cold dust in the systems was found, but none with the stellar spectral type or age. The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 sigma upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while ~20% are significantly more dusty. The Solar systems HZ dust content is consistent with being typical. Our median HZ dust level would not be a major limitation to the direct imaging search for Earth-like exoplanets, but more precise constraints are still required, in particular to evaluate the impact of exozodiacal dust for the spectroscopic characterization of imaged exo-Earth candidates.
The HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey searches for dust near the habitable zones (HZs) around nearby, bright main sequence stars. We use nulling interferometry in N band to suppress the bright stellar light and to p
[abridged] The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed an N band nulling interferometric survey to determine the typical amount of such exoz
Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar systems counterparts are the asteroid and Edgeworth-Kuiper belts. The DUNES survey aims at detecting extra-solar analo
Exozodiacal dust is warm or hot dust found in the inner regions of planetary systems orbiting main sequence stars, in or around their habitable zones. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emit
We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for substellar companions to young stars using high contrast imaging. Although stars with known stellar companions within SPHERE