ﻻ يوجد ملخص باللغة العربية
Digital Elevation Models (DEMs) are important datasets for modelling the line of sight, such as radio signals, sound waves and human vision. These are commonly analyzed using rotational sweep algorithms. However, such algorithms require large numbers of memory accesses to 2D arrays which, despite being regular, result in poor data locality in memory. Here, we propose a new methodology called skewed Digital Elevation Model (sDEM), which substantially improves the locality of memory accesses and increases the inherent parallelism involved in the computation of rotational sweep-based algorithms. In particular, sDEM applies a data restructuring technique before accessing the memory and performing the computation. To demonstrate the high efficiency of sDEM, we use the problem of total viewshed computation as a case study considering different implementations for single-core, multi-core, single-GPU and multi-GPU platforms. We conducted two experiments to compare sDEM with (i) the most commonly used geographic information systems (GIS) software and (ii) the state-of-the-art algorithm. In the first experiment, sDEM is on average 8.8x faster than current GIS software despite being able to consider only few points because of their limitations. In the second experiment, sDEM is 827.3x faster than the state-of-the-art algorithm in the best case.
Upcoming and future astronomy research facilities will systematically generate terabyte-sized data sets moving astronomy into the Petascale data era. While such facilities will provide astronomers with unprecedented levels of accuracy and coverage, t
Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commo
We introduce a framework for statistical estimation that leverages knowledge of how samples are collected but makes no distributional assumptions on the data values. Specifically, we consider a population of elements $[n]={1,ldots,n}$ with correspond
Over the past years GPUs have been successfully applied to the task of inverting the fermion matrix in lattice QCD calculations. Even strong scaling to capability-level supercomputers, corresponding to O(100) GPUs or more has been achieved. However s
Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for $ k $ disjoint subsets of vertices