ﻻ يوجد ملخص باللغة العربية
Neutrinos play an important role in compact star astrophysics: neutrino-heating is one of the main ingredients in core-collapse supernovae, neutrino-matter interactions determine the composition of matter in binary neutron star mergers and have among others a strong impact on conditions for heavy element nucleosynthesis and neutron star cooling is dominated by neutrino emission except for very old stars. Many works in the last decades have shown that in dense matter medium effects considerably change the neutrino-matter interaction rates, whereas many astrophysical simulations use analytic approximations which are often far from reproducing more complete calculations. In this work we present a scheme which allows to incorporate improved rates, for charged current interactions, into simulations and show as an example some results for core-collapse supernovae, where a noticeable difference is found in the location of the neutrinospheres of the low-energy neutrinos in the early post-bounce phase.
We study the influence of density-dependent symmetry energy at high densities in simulations of core-collapse supernovae, black hole formation and proto-neutron star cooling by extending the relativistic mean field (RMF) theory used for the Shen EOS
Nucleon effective masses are studied in the framework of the Brueckner-Hartree-Fock many-body approach at finite temperature. Self-consistent calculations using the Argonne $V_{18}$ interaction including microscopic three-body forces are reported for
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t
Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat
We apply the renormalization group optimized perturbation theory (RGOPT) to evaluate the quark contribution to the QCD pressure at finite temperatures and baryonic densities, at next-to-leading order (NLO). Our results are compared to NLO and state-o