ﻻ يوجد ملخص باللغة العربية
In this paper, we first define the pre-Lie family algebra associated to a dendriform family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family algebra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled rooted trees, which generalizes the result of F. Chapoton and M. Livernet. In the end, we construct Zinbiel and pre-Poisson family algebras and generalize results of M. Aguiar.
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
In this paper, we define a new cohomology theory for multiplicative Hom-pre-Lie algebras which controls deformations of Hom-pre-Lie algebra structure. This new cohomology is a natural one considering the structure map $alpha$. We show this new cohomo
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gr{o}bner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebr
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such
We develop tools for classification of contraction algebras and apply these to solve the problem on classification up to isomorphism of 8 and 9 dimensional algebras corresponding to 3-fold flops. We prove that there is only one up to isomorphism cont