ترغب بنشر مسار تعليمي؟ اضغط هنا

New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds

178   0   0.0 ( 0 )
 نشر من قبل Alexander Place
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.



قيم البحث

اقرأ أيضاً

By using the dry etching process of tantalum (Ta) film, we had obtained transmon qubit with the best lifetime (T1) 503 us, suggesting that the dry etching process can be adopted in the following multi-qubit fabrication with Ta film. We also compared the relaxation and coherence times of transmons made with different materials (Ta, Nb and Al) with the same design and fabrication processes of Josephson junction, we found that samples prepared with Ta film had the best performance, followed by those with Al film and Nb film. We inferred that the reason for this difference was due to the different loss of oxide materials located at the metal-air interface.
100 - Conal E. Murray 2021
The progress witnessed within the field of quantum computing has been enabled by the identification and understanding of interactions between the state of the quantum bit (qubit) and the materials within its environment. Beginning with an introductio n of the parameters used to differentiate various quantum computing approaches, we discuss the evolution of the key components that comprise superconducting qubits, where the methods of fabrication can play as important a role as the composition in dictating the overall performance. We describe several mechanisms that are responsible for the relaxation or decoherence of superconducting qubits and the corresponding methods that can be utilized to characterize their influence. In particular, the effects of dielectric loss and its manifestation through the interaction with two-level systems (TLS) are discussed. We elaborate on the methods that are employed to quantify dielectric loss through the modeling of energy flowing through the surrounding dielectric materials, which can include contributions due to both intrinsic TLS and extrinsic aspects, such as those generated by processing. The resulting analyses provide insight into identifying the relative participation of specific sections of qubit designs and refinements in construction that can mitigate their impact on qubit quality factors. Additional prominent mechanisms that can lead to energy relaxation within qubits are presented along with experimental techniques which assess their importance. We close by highlighting areas of future research that should be addressed to help facilitating the successful scaling of superconducting quantum computing.
Spins of negatively charged nitrogen-vacancy (NV$^-$) defects in diamond are among the most promising candidates for solid-state qubits. The fabrication of quantum devices containing these spin-carrying defects requires position-controlled introducti on of NV$^-$ defects having excellent properties such as spectral stability, long spin coherence time, and stable negative charge state. Nitrogen ion implantation and annealing enable the positioning of NV$^-$ spin qubits with high precision, but to date, the coherence times of qubits produced this way are short, presumably because of the presence of residual radiation damage. In the present work, we demonstrate that a high temperature annealing at 1000$^circ$C allows 2 millisecond coherence times to be achieved at room temperature. These results were obtained for implantation-produced NV$^-$ defects in a high-purity, 99.99% $^{12}$C enriched single crystal chemical vapor deposited diamond. We discuss these remarkably long coherence times in the context of the thermal behavior of residual defect spins. [Published in Physical Review B {bf{88}}, 075206 (2013)]
We report the first evidence of the formation of niobium hydrides within niobium films on silicon substrates in superconducting qubits fabricated at Rigetti Computing. We combine complementary techniques including room and cryogenic temperature atomi c scale high-resolution and scanning transmission electron microscopy (HR-TEM and STEM), atomic force microscopy (AFM), and the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) to reveal the existence of the niobium hydride precipitates directly in the Rigetti chip areas. Electron diffraction and high-resolution transmission electron microscopy (HR-TEM) analyses are performed at room and cryogenic temperatures (~106 K) on superconducting qubit niobium film areas, and reveal the formation of three types of Nb hydride domains with different crystalline orientations and atomic structures. There is also variation in their size and morphology from small (~5 nm) irregular shape domains within the Nb grains to large (~10-100 nm) Nb grains fully converted to niobium hydride. As niobium hydrides are non-superconducting and can easily change in size and location upon different cooldowns to cryogenic temperatures, our findings highlight a new previously unknown source of decoherence in superconducting qubits, contributing to both quasiparticle and two-level system (TLS) losses, and offering a potential explanation for qubit performance changes upon cooldowns. A pathway to mitigate the formation of the Nb hydrides for superconducting qubit applications is also discussed.
We consider the effect of phase backaction on the correlator $langle I(t), I(t+tau )rangle$ for the output signal $I(t)$ from continuous measurement of a qubit. We demonstrate that the interplay between informational and phase backactions in the pres ence of Rabi oscillations can lead to the correlator becoming larger than 1, even though $|langle Irangle|leq 1$. The correlators can be calculated using the generalized collapse recipe which we validate using the quantum Bayesian formalism. The recipe can be further generalized to the case of multi-time correlators and arbitrary number of detectors, measuring non-commuting qubit observables. The theory agrees well with experimental results for continuous measurement of a transmon qubit. The experimental correlator exceeds the bound of 1 for a sufficiently large angle between the amplified and informational quadratures, causing the phase backaction. The demonstrated effect can be used to calibrate the quadrature misalignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا