ﻻ يوجد ملخص باللغة العربية
The ARF-AID (Auxin Response Factor-Auxin Inducible Degron) system is a re-engineered auxin-inducible protein degradation system. Inducible degron systems are widely used to specifically and rapidly deplete proteins of interest in cell lines and organisms. An advantage of inducible degradation is that the biological system under study remains intact and functional until perturbation. This feature necessitates that the endogenous levels of the protein are maintained. However, endogenous tagging of genes with AID can result in chronic, auxin-independent proteasome-mediated degradation. The additional expression of the ARF-PB1 domain in the re-engineered ARF-AID system prevents chronic degradation of AID-tagged proteins while preserving rapid degradation of tagged proteins. Here we describe the protocol for engineering human cell lines to implement the ARF-AID system for specific and inducible protein degradation. These methods are adaptable and can be extended from cell lines to organisms.
From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading
The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source
We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several
Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatoria
Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in