ترغب بنشر مسار تعليمي؟ اضغط هنا

The ARF-AID system: Methods that preserve endogenous protein levels and facilitate rapidly inducible protein degradation

92   0   0.0 ( 0 )
 نشر من قبل Michael Guertin
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ARF-AID (Auxin Response Factor-Auxin Inducible Degron) system is a re-engineered auxin-inducible protein degradation system. Inducible degron systems are widely used to specifically and rapidly deplete proteins of interest in cell lines and organisms. An advantage of inducible degradation is that the biological system under study remains intact and functional until perturbation. This feature necessitates that the endogenous levels of the protein are maintained. However, endogenous tagging of genes with AID can result in chronic, auxin-independent proteasome-mediated degradation. The additional expression of the ARF-PB1 domain in the re-engineered ARF-AID system prevents chronic degradation of AID-tagged proteins while preserving rapid degradation of tagged proteins. Here we describe the protocol for engineering human cell lines to implement the ARF-AID system for specific and inducible protein degradation. These methods are adaptable and can be extended from cell lines to organisms.

قيم البحث

اقرأ أيضاً

From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.
The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source of intrinsic stochasticity in biomolecular systems are random timings of individual reactions, which cumulatively drive the variability in outputs of such systems. Despite the acknowledged relevance of stochasticity in the functioning of living cells no rigorous method have been proposed to precisely identify sources of variability. In this paper we propose a novel methodology that allows us to calculate contributions of individual reactions into the variability of a systems output. We demonstrate that some reactions have dramatically different effects on noise than others. Surprisingly, in the class of open conversion systems that serve as an approximate model of signal transduction, the degradation of an output contributes half of the total noise. We also demonstrate the importance of degradation in other relevant systems and propose a degradation feedback control mechanism that has the capability of an effective noise suppression. Application of our method to some well studied biochemical systems such as: gene expression, Michaelis-Menten enzyme kinetics, and the p53 system indicates that our methodology reveals an unprecedented insight into the origins of variability in biochemical systems. For many systems an analytical decomposition is not available; therefore the method has been implemented as a Matlab package and is available from the authors upon request.
We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets. We then perform a comparative analysis of seeds built over those alphabets and compare them with the standard BLASTP seeding method [2], [3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seeds is less expressive (but less costly to implement) than the cumulative principle used in BLASTP and vector seeds, our seeds show a similar or even better performance than BLASTP on Bernoulli models of proteins compatible with the common BLOSUM62 matrix. Finally, we perform a large-scale benchmarking of our seeds against several main databases of protein alignments. Here again, the results show a comparable or better performance of our seeds vs. BLASTP.
Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatoria l complexity of protein sequences. Here, we review how to use a sequence-to-function machine-learning surrogate model to select sequences for experimental measurement. First, we discuss how to select sequences through a single round of machine-learning optimization. Then, we discuss sequential optimization, where the goal is to discover optimized sequences and improve the model across multiple rounds of training, optimization, and experimental measurement.
Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in multiphoton FLIM methods and also present a description of a novel multiphoton FLIM system using a streak camera that was developed in our laboratory. We provide an example of a typical application of the system in which we measure the fluorescence resonance energy transfer between a donor/acceptor pair of fluorescent proteins within a cellular specimen.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا