ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature tetragonal crystal structure of UPt$_2$Si$_2$

150   0   0.0 ( 0 )
 نشر من قبل Karel Prokes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High temperature crystal structure of UPt$_2$Si$_2$ determined using single-crystal neutron diffraction at 400 K is reported. It is found that the crystal structure remains of the primitive tetragonal CaBe$_2$Ge$_2$ type with the space group P4/$n m m. Anisotropic displacement factors of the Pt atoms at the 2a (3/4 1/4 0) and Si atoms at the 2c (1/4 1/4 z) Wyckoff sites are found to be anomalously large.

قيم البحث

اقرأ أيضاً

We have measured Hall effect, magnetotransport and magnetostriction on the field induced phases of single crystalline UPt$_2$Si$_2$ in magnetic fields up to 60,T at temperatures down to 50,mK. For the magnetic field applied along the $c$ axis we obse rve strong changes in the Hall effect at the phase boundaries. From a comparison to band structure calculations utilizing the concept of a dual nature of the uranium 5$f$ electrons, we find evidence for field induced topological changes of the Fermi surface due to at least one Lifshitz transition. Furthermore, we find a unique history dependence of the magnetotransport and magnetostriction data, indicating that the Lifshitz type transition is of a discontinuous nature, as predicted for interacting electron systems.
High-temperature indium flux growth was applied to prepare single crystals of GdRh$_2$Si$_2$ by a modified Bridgman method leading to mm-sized single crystals with a platelet habitus. Specific heat and susceptibility data of GdRh$_2$Si$_2$ exhibit a pronounced anomaly at $T_N = 107rm ,K$, where the AFM ordering sets in. Magnetic measurements on the single crystals were performed down to $T = 2$,K in external fields from B = 0 - 9,T applied along the $[100]$-, $[110]$- and $[001]$-direction of the tetragonal lattice. The effective magnetic moment determined from a Curie-Weiss fit agrees well with values from literature, and is larger than the theoretically predicted value. Electrical transport data recorded for current flow parallel and perpendicular to the $[001]$-direction show a large anisotropy below $T_N$. The residual resistivity ratio $rm RRR=rho_{300K}/rho_{0}sim 23$ demonstrates that we succeeded in preparing high-quality crystals using high-temperature indium flux-growth.
We have successfully grown the single crystals of CeAg$_2$Ge$_2$, for the first time, by flux method and studied the anisotropic physical properties by measuring the electrical resistivity, magnetic susceptibility and specific heat. We found that CeA g$_2$Ge$_2$ undergoes an antiferromagnetic transition at $T_{rm N}$ = 4.6 K. The electrical resistivity and susceptibility data reveal strong anisotropic magnetic properties. The magnetization measured at $T$ = 2 K exhibited two metamagnetic transitions at $H_{rm m1}$ = 31 kOe and $H_{rm m2}$ = 44.7 kOe, for $H parallel$ [100] with a saturation magnetization of 1.6 $mu_{rm B}$/Ce. The crystalline electric field (CEF) analysis of the inverse susceptibility data reveals that the ground state and the first excited states of CeAg$_2$Ge$_2$ are closely spaced indicating a quasi-quartet ground state. The specific heat data lend further support to the presence of closely spaced energy levels.
240 - J. Srpcic , P. Jeglic , I. Felner 2016
The surprising discovery of tripling the superconducting critical temperature of KFe$_2$As$_2$ at high pressures issued an intriguing question of how the superconductivity in the collapsed tetragonal phase differs from that in the non-collapsed phase s of Fe-based superconductors. Here we report $^{89}$Y nuclear magnetic resonance study of YFe$_2$Ge$_{x}$Si$_{2-x}$ compounds whose electronic structure is similar to that of iron-pnictide collapsed tetragonal phases already at ambient pressure. Fe(Ge,Si) layers show strong ferromagnetic spin fluctuations whereas layers are coupled antiferromagnetically -- both positioning the studied family close to a quantum critical point. Next, localized moments attributed either to Fe interstitial or antisite defects may account for magnetic impurity pair-breaking effects thus explaining the substantial variation of superconductivity among different YFe$_2$Ge$_2$ samples.
The anisotropy of magnetic properties commonly is introduced in textbooks using the case of an antiferromagnetic system with Ising type anisotropy. This model presents huge anisotropic magnetization and a pronounced metamagnetic transition and is wel l-known and well-documented both, in experiments and theory. In contrast, the case of an antiferromagnetic $X$-$Y$ system with weak in-plane anisotropy is only poorly documented. We studied the anisotropic magnetization of the compound GdRh$_2$Si$_2$ and found that it is a perfect model system for such a weak-anisotropy setting because the Gd$^{3+}$ ions in GdRh$_2$Si$_2$ have a pure spin moment of S=7/2 which orders in a simple AFM structure with ${bf Q} = (001)$. We observed experimentally in $M(B)$ a continuous spin-flop transition and domain effects for field applied along the $[100]$- and the $[110]$-direction, respectively. We applied a mean field model for the free energy to describe our data and combine it with an Ising chain model to account for domain effects. Our calculations reproduce the experimental data very well. In addition, we performed magnetic X-ray scattering and X-ray magnetic circular dichroism measurements, which confirm the AFM propagation vector to be ${bf Q} = (001)$ and indicate the absence of polarization on the rhodium atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا