ﻻ يوجد ملخص باللغة العربية
In this work, we develop low complexity, optimal power allocation algorithms that would allow ultra reliable operation at any outage probability target with minimum power consumption in the finite blocklength regime by utilizing Karush-Kuhn-Tucker (KKT) conditions. In our setup, we assume that the transmitter does not know the channel state information (CSI). First, we show that achieving a very low packet outage probability by using an open loop setup requires extremely high power consumption. Thus, we resort to retransmission schemes as a solution, namely Automatic Repeat Request (ARQ), Chase Combining Hybrid ARQ (CC-HARQ) and Incremental Redundancy (IR) HARQ. Countrary to classical approaches, where it is optimal to allocate equal power with each transmission, we show that for operation in the ultra reliable regime (URR), the optimal strategy suggests transmission with incremental power in each round. Numerically, we evaluate the power gains of the proposed protocol. We show that the best power saving is given by IR-HARQ protocol. Further, we show that when compared to the one shot transmission, these protocols enable large average and maximum power gains. Finally, we show that the larger the number of transmissions is, the larger power gains will be attained.
Hybrid Automatic ReQuest (HARQ) protocol enables reliable communications in wireless systems. Usually, several parallel streams are sent in successive timeslots following a time-sharing approach. Recently, multi-layer HARQ has been proposed by superp
Effective capacity (EC) determines the maximum communication rate subject to a particular delay constraint. In this work, we analyze the EC of ultra reliable Machine Type Communication (MTC) networks operating in the finite blocklength (FB) regime. F
Novel bitwise retransmission schemes are devised which retransmit only the bits received with small reliability. The retransmissions are used to accumulate the reliabilities of individual bits. Unlike the conventional automatic repeat request (ARQ) s
Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable netwo
Age-of-information is a novel performance metric in communication systems to indicate the freshness of the latest received data, which has wide applications in monitoring and control scenarios. Another important performance metric in these applicatio