ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional phonon population anisotropy in silicon nanomembranes

214   0   0.0 ( 0 )
 نشر من قبل Paul Evans
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nanoscale single-crystals possess modified phonon dispersions due to the truncation of the crystal. The introduction of surfaces alters the population of phonons relative to the bulk and introduces anisotropy arising from the breaking of translational symmetry. Such modifications exist throughout the Brillouin zone, even in structures with dimensions of several nanometers, posing a challenge to the characterization of vibrational properties and leading to uncertainty in predicting the thermal, optical, and electronic properties of nanomaterials. Synchrotron x-ray thermal diffuse scattering studies find that freestanding Si nanomembranes with thicknesses as large as 21 nm exhibit a higher scattering intensity per unit thickness than bulk silicon. In addition, the anisotropy arising from the finite thickness of these membranes produces particularly intense scattering along reciprocal-space directions normal to the membrane surface compared to corresponding in-plane directions. These results reveal the dimensions at which calculations of materials properties and device characteristics based on bulk phonon dispersions require consideration of the nanoscale size of the crystal.



قيم البحث

اقرأ أيضاً

Surface phonon-polaritons can carry energy on the surface of dielectric films and thus are expected to contribute to heat conduction. However, the contribution of surface phonon-polaritons (SPhPs) to thermal transport has not been experimentally demo nstrated yet. In this work, we experimentally measure the effective in-plane thermal conductivity of amorphous silicon nitride membrane and show that it can indeed be increased by SPhPs significantly when the membrane thickness scales down. In particular, by heating up a thin membrane (<100 nm) from 300 to 800 K, the thermal conductivity increases twice due to SPhPs contribution.
Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q D for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two -dimensional (2D) systems. Recent studies have pointed out that in 2D, splitting between longitudinal and transverse optical (LO and TO) phonons is absent at the $Gamma$ point, even for polar materials. Does this lack of LO--TO splitting imply the absence of a phonon polariton in polar monolayers? Here, we derive a first-principles expression for the conductivity of a polar monolayer specified by the wavevector-dependent LO and TO phonon dispersions. In the long-wavelength (local) limit, we find a universal form for the conductivity in terms of the LO phonon frequency at the $Gamma$ point, its lifetime, and the group velocity of the LO phonon. Our analysis reveals that the phonon polariton of 2D is simply the LO phonon of the 2D system. For the specific example of hexagonal boron nitride (hBN), we estimate the confinement and propagation losses of the LO phonons, finding that high confinement and reasonable propagation quality factors coincide in regions which may be difficult to detect with current near-field optical microscopy techniques. Finally, we study the interaction of external emitters with two-dimensional hBN nanostructures, finding extreme enhancement of spontaneous emission due to coupling with localized 2D phonon polaritons, and the possibility of multi-mode strong and ultra-strong coupling between an external emitter and hBN phonons. This may lead to the design of new hybrid states of electrons and phonons based on strong coupling.
Temperature-dependent thermal conductivity of epitaxial silicon nano-crystalline (SiNC) structures composed of nanometer-sized grains separated by ultra-thin silicon-oxide (SiO2) films is measured by the time domain thermoreflectance technique in the range from 50 to 300 K. Thermal conductivity of SiNC structures with grain size of 3 nm and 5 nm is anomalously low at the entire temperature range, significantly below the values of bulk amorphous Si and SiO2. Phonon gas kinetics model, with intrinsic transport properties obtained by first-principles-based anharmonic lattice dynamics and phonon transmittance across ultra-thin SiO2 films obtained by atomistic Greens function, reproduces the measured thermal conductivity without any fitting parameters. The analysis reveals that mean free paths of acoustic phonons in the SiNC structures are equivalent or even below half the phonon wavelength, i.e. the minimum thermal conductivity scenario. The result demonstrates that the nanostructures with extremely small length scales and controlled interface can give rise to ultimate classical confinement of thermal phonon propagation.
In bilayer CrI3, experimental and theoretical studies suggest that the magnetic order is closely related to the layer staking configuration. In this work, we study the effect of dynamical lattice distortions, induced by non-linear phonon coupling, in the magnetic order of the bilayer system. We use density functional theory to determine the phonon properties and group theory to obtain the allowed phonon-phonon interactions. We find that the bilayer structure possesses low-frequency Raman modes that can be non-linearly activated upon the coherent photo-excitation of a suitable infrared phonon mode. This transient lattice modification, in turn, inverts the sign of the interlayer spin interaction for parameters accessible in experiments, indicating a low-frequency light-induced antiferromagnet-to-ferromagnet transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا