ﻻ يوجد ملخص باللغة العربية
Our work focuses on unsupervised and generative methods that address the following goals: (a) learning unsupervised generative representations that discover latent factors controlling image semantic attributes, (b) studying how this ability to control attributes formally relates to the issue of latent factor disentanglement, clarifying related but dissimilar concepts that had been confounded in the past, and (c) developing anomaly detection methods that leverage representations learned in (a). For (a), we propose a network architecture that exploits the combination of multiscale generative models with mutual information (MI) maximization. For (b), we derive an analytical result (Lemma 1) that brings clarity to two related but distinct concepts: the ability of generative networks to control semantic attributes of images they generate, resulting from MI maximization, and the ability to disentangle latent space representations, obtained via total correlation minimization. More specifically, we demonstrate that maximizing semantic attribute control encourages disentanglement of latent factors. Using Lemma 1 and adopting MI in our loss function, we then show empirically that, for image generation tasks, the proposed approach exhibits superior performance as measured in the quality and disentanglement trade space, when compared to other state of the art methods, with quality assessed via the Frechet Inception Distance (FID), and disentanglement via mutual information gap. For (c), we design several systems for anomaly detection exploiting representations learned in (a), and demonstrate their performance benefits when compared to state-of-the-art generative and discriminative algorithms. The above contributions in representation learning have potential applications in addressing other important problems in computer vision, such as bias and privacy in AI.
We demonstrate how to explore phase diagrams with automated and unsupervised machine learning to find regions of interest for possible new phases. In contrast to supervised learning, where data is classified using predetermined labels, we here perfor
We propose FineGAN, a novel unsupervised GAN framework, which disentangles the background, object shape, and object appearance to hierarchically generate images of fine-grained object categories. To disentangle the factors without supervision, our ke
Anomaly detection from a single image is challenging since anomaly data is always rare and can be with highly unpredictable types. With only anomaly-free data available, most existing methods train an AutoEncoder to reconstruct the input image and fi
Human communication takes many forms, including speech, text and instructional videos. It typically has an underlying structure, with a starting point, ending, and certain objective steps between them. In this paper, we consider instructional videos
Both high-level and high-resolution feature representations are of great importance in various visual understanding tasks. To acquire high-resolution feature maps with high-level semantic information, one common strategy is to adopt dilated convoluti