ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary Scoring Rules that Incentivize Precision

306   0   0.0 ( 0 )
 نشر من قبل Eric Neyman
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

All proper scoring rules incentivize an expert to predict emph{accurately} (report their true estimate), but not all proper scoring rules equally incentivize emph{precision}. Rather than treating the experts belief as exogenously given, we consider a model where a rational expert can endogenously refine their belief by repeatedly paying a fixed cost, and is incentivized to do so by a proper scoring rule. Specifically, our expert aims to predict the probability that a biased coin flipped tomorrow will land heads, and can flip the coin any number of times today at a cost of $c$ per flip. Our first main result defines an emph{incentivization index} for proper scoring rules, and proves that this index measures the expected error of the experts estimate (where the number of flips today is chosen adaptively to maximize the predictors expected payoff). Our second main result finds the unique scoring rule which optimizes the incentivization index over all proper scoring rules. We also consider extensions to minimizing the $ell^{th}$ moment of error, and again provide an incentivization index and optimal proper scoring rule. In some cases, the resulting scoring rule is differentiable, but not infinitely differentiable. In these cases, we further prove that the optimum can be uniformly approximated by polynomial scoring rules. Finally, we compare common scoring rules via our measure, and include simulations confirming the relevance of our measure even in domains outside where it provably applies.



قيم البحث

اقرأ أيضاً

This paper introduces an objective for optimizing proper scoring rules. The objective is to maximize the increase in payoff of a forecaster who exerts a binary level of effort to refine a posterior belief from a prior belief. In this framework we cha racterize optimal scoring rules in simple settings, give efficient algorithms for computing optimal scoring rules in complex settings, and identify simple scoring rules that are approximately optimal. In comparison, standard scoring rules in theory and practice -- for example the quadratic rule, scoring rules for the expectation, and scoring rules for multiple tasks that are averages of single-task scoring rules -- can be very far from optimal.
This paper forges a strong connection between two seemingly unrelated forecasting problems: incentive-compatible forecast elicitation and forecast aggregation. Proper scoring rules are the well-known solution to the former problem. To each such rule s we associate a corresponding method of aggregation, mapping expert forecasts and expert weights to a consensus forecast, which we call *quasi-arithmetic (QA) pooling* with respect to s. We justify this correspondence in several ways: - QA pooling with respect to the two most well-studied scoring rules (quadratic and logarithmic) corresponds to the two most well-studied forecast aggregation methods (linear and logarithmic). - Given a scoring rule s used for payment, a forecaster agent who sub-contracts several experts, paying them in proportion to their weights, is best off aggregating the experts reports using QA pooling with respect to s, meaning this strategy maximizes its worst-case profit (over the possible outcomes). - The score of an aggregator who uses QA pooling is concave in the experts weights. As a consequence, online gradient descent can be used to learn appropriate expert weights from repeated experiments with low regret. - The class of all QA pooling methods is characterized by a natural set of axioms (generalizing classical work by Kolmogorov on quasi-arithmetic means).
We investigate proper scoring rules for continuous distributions on the real line. It is known that the log score is the only such rule that depends on the quoted density only through its value at the outcome that materializes. Here we allow further dependence on a finite number $m$ of derivatives of the density at the outcome, and describe a large class of such $m$-local proper scoring rules: these exist for all even $m$ but no odd $m$. We further show that for $mgeq2$ all such $m$-local rules can be computed without knowledge of the normalizing constant of the distribution.
143 - Pablo Azar , Shafi Goldwasser , 2016
The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output improves on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness.
240 - Yiling Chen , Fang-Yi Yu 2021
This paper introduces an optimization problem for proper scoring rule design. Consider a principal who wants to collect an agents prediction about an unknown state. The agent can either report his prior prediction or access a costly signal and report the posterior prediction. Given a collection of possible distributions containing the agents posterior prediction distribution, the principals objective is to design a bounded scoring rule to maximize the agents worst-case payoff increment between reporting his posterior prediction and reporting his prior prediction. We study two settings of such optimization for proper scoring rules: static and asymptotic settings. In the static setting, where the agent can access one signal, we propose an efficient algorithm to compute an optimal scoring rule when the collection of distributions is finite. The agent can adaptively and indefinitely refine his prediction in the asymptotic setting. We first consider a sequence of collections of posterior distributions with vanishing covariance, which emulates general estimators with large samples, and show the optimality of the quadratic scoring rule. Then, when the agents posterior distribution is a Beta-Bernoulli process, we find that the log scoring rule is optimal. We also prove the optimality of the log scoring rule over a smaller set of functions for categorical distributions with Dirichlet priors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا