ترغب بنشر مسار تعليمي؟ اضغط هنا

NuRIA: Numerical Relativity Injection Analysis of spinning binary black hole signals in Advanced LIGO data

178   0   0.0 ( 0 )
 نشر من قبل Koustav Chandra
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The advent of gravitational wave (GW) astronomy has provided us with observations of black holes more massive than those known from X-ray astronomy. However, the observation of an intermediate-mass black hole (IMBH) remains a big challenge. After their second observing run, the LIGO & Virgo Scientific collaborations (LVC) placed upper limits on the coalescence rate density of non-precessing IMBH binaries (IMBHBs). In this article, we explore the sensitivity of two of the search pipelines used by the LVC to signals from 69 numerically simulated IMBHBs with generic spins, out of which 27 have a precessing orbital plane. In particular, we compare the matched-filter search PyCBC, and the coherent model-independent search technique cWB. We find that, in general, cWB is more sensitive to IMBHBs than PyCBC, with their difference depending on the masses and spins of the source. Consequently, we use cWB to place the first upper limits on the merger rate of generically spinning IMBH binaries using publicly available data from the first Advanced LIGO observing run.



قيم البحث

اقرأ أيضاً

We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the impact of black hole spin on the dynamical formation and evolution of minidisks. We find that during the late inspiral t he sizes of minidisks are primarily determined by the interplay between the tidal field and the effective innermost stable orbit around each black hole. Our calculations support that a minidisk forms when the Hill sphere around each black hole is significantly larger than the black holes effective innermost stable orbit. As the binary inspirals, the radius of the Hill sphere decreases, and minidisk sconsequently shrink in size. As a result, electromagnetic signatures associated with minidisks may be expected to gradually disappear prior to merger when there are no more stable orbits within the Hill sphere. In particular, a gradual disappearance of a hard electromagnetic component in the spectrum of such systems could provide a characteristic signature of merging black hole binaries. For a binary of given total mass, the timescale to minidisk evaporation should therefore depend on the black hole spins and the mass ratio. We also demonstrate that accreting binary black holes with spin have a higher efficiency for converting accretion power to jet luminosity. These results could provide new ways to estimate black hole spins in the future.
In the next few years Advanced LIGO (aLIGO) may see gravitational waves (GWs) from thousands of black hole (BH) mergers. This marks the beginning of a new precision tool for physics. Here we show how to search for new physics beyond the standard mode l using this tool, in particular the QCD axion in the mass range ma ~ 10^-14 to 10^-10 eV. Axions (or any bosons) in this mass range cause rapidly rotating BHs to shed their spin into a large cloud of axions in atomic Bohr orbits around the BH, through the effect of superradiance (SR). This results in a gap in the mass vs. spin distribution of BHs when the BH size is comparable to the axions Compton wavelength. By measuring the spin and mass of the merging objects observed at LIGO, we could verify the presence and shape of the gap in the BH distribution produced by the axion. The axion cloud can also be discovered through the GWs it radiates via axion annihilations or level transitions. A blind monochromatic GW search may reveal up to 10^5 BHs radiating through axion annihilations, at distinct frequencies within ~3% of $2 ma. Axion transitions probe heavier axions and may be observable in future GW observatories. The merger events are perfect candidates for a targeted GW search. If the final BH has high spin, a SR cloud may grow and emit monochromatic GWs from axion annihilations. We may observe the SR evolution in real time.
Supplemental information for a Letter reporting the rate of binary black hole (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient gravitational wave signal GW150914. In that work we reported var ious rate estimates whose 90% credible intervals fell in the range $2$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. Here we give details of our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method of estimating our detector sensitivity that is calibrated to our measurements.
The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary bl ack hole merger signals with total masses up to $100 M_odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range $9-240 mathrm{Gpc}^{-3} mathrm{yr}^{-1}$. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.
Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on b inary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed sub-population of spinning, merging binary black holes, but also lead to long gamma-ray bursts at the time of black-hole formation, with rates matching the empirical ones. We find that $approx$10% of the GWTC-2 reported binary black holes had a long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of $approx$85% and $approx$60%, respectively, being among them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا