ﻻ يوجد ملخص باللغة العربية
We first review the problem of a rigorous justification of Kubos formula for transport coefficients in gapped extended Hamiltonian quantum systems at zero temperature. In particular, the theoretical understanding of the quantum Hall effect rests on the validity of Kubos formula for such systems, a connection that we review briefly as well. We then highlight an approach to linear response theory based on non-equilibrium almost-stationary states (NEASS) and on a corresponding adiabatic theorem for such systems that was recently proposed and worked out by one of us in [51] for interacting fermionic systems on finite lattices. In the second part of our paper we show how to lift the results of [51] to infinite systems by taking a thermodynamic limit.
We introduced some contact potentials that can be written as a linear combination of the Dirac delta and its first derivative, the $delta$-$delta$ interaction. After a simple general presentation in one dimension, we briefly discuss a one dimension
We get a generalization of Kreins formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case $A=-partial_x^2+( u^2-1/4)/x^2+V(x)$, where $0< u<1$ and $V(x)$
In this note we consider a quantum mechanical particle moving inside an infinitesimally thin layer constrained by a parabolic well in the $x$-direction and, moreover, in the presence of an impurity modelled by an attractive Gaussian potential. We inv
We examine time dependent Schru007fodinger equation with oscillating boundary condition. More specifically, we use separation of variable technique to construct time dependent rationally extended Pu007foschl-Teller potential (whose solutions are give
We prove a new lower bound on the indirect Coulomb energy in quantum mechanics in terms of the single particle density of the system. The new universal lower bound is an alternative to the classical Lieb--Oxford bound (with a smaller constant, 1.45 <