ترغب بنشر مسار تعليمي؟ اضغط هنا

Linking the formation and fate of exo-Kuiper belts within solar system analogues

86   0   0.0 ( 0 )
 نشر من قبل Dimitri Veras
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Escalating observations of exo-minor planets and their destroyed remnants both passing through the solar system and within white dwarf planetary systems motivate an understanding of the orbital history and fate of exo-Kuiper belts and planetesimal discs. Here we explore how the structure of a 40-1000 au annulus of planetesimals orbiting inside of a solar system analogue that is itself initially embedded within a stellar cluster environment varies as the star evolves through all of its stellar phases. We attempt this computationally challenging link in four parts: (1) by performing stellar cluster simulations lasting 100 Myr, (2) by making assumptions about the subsequent quiescent 11 Gyr main-sequence evolution, (3) by performing simulations throughout the giant branch phases of evolution, and (4) by making assumptions about the belts evolution during the white dwarf phase. Throughout these stages, we estimate the planetesimals gravitational responses to analogues of the four solar system giant planets, as well as to collisional grinding, Galactic tides, stellar flybys, and stellar radiation. We find that the imprint of stellar cluster dynamics on the architecture of $gtrsim 100$ km-sized exo-Kuiper belt planetesimals is retained throughout all phases of stellar evolution unless violent gravitational instabilities are triggered either (1) amongst the giant planets, or (2) due to a close ($ll 10^3$ au) stellar flyby. In the absence of these instabilities, these minor planets simply double their semimajor axis while retaining their primordial post-cluster eccentricity and inclination distributions, with implications for the free-floating planetesimal population and metal-polluted white dwarfs.



قيم البحث

اقرأ أيضاً

150 - R. Nilsson 2010
In order to detect and characterise cold extended circumstellar dust originating from collisions of planetesimal bodies in disks, belts, or rings at Kuiper-Belt distances (30-50 AU or beyond) sensitive submillimetre observations are essential. Measur ements of the flux densities at these wavelengths will extend existing IR photometry and permit more detailed modelling of the Rayleigh-Jeans tail of the disks spectral energy distribution (SED), effectively constraining dust properties and disk extensions. By observing stars spanning from a few up to several hundred Myr, the evolution of debris disks during crucial phases of planet formation can be studied. We have performed 870-micron observations of 22 exo-Kuiper-Belt candidates, as part of a Large Programme with the LABOCA bolometer at the APEX telescope. Dust masses (or upper limits) were calculated from integrated 870-micron fluxes, and fits to the SED of detected sources revealed the fractional dust luminosities f_dust, dust temperatures T_dust, and power-law exponents beta of the opacity law. A total of 10 detections with at least 3-sigma significance were made, out of which five (HD 95086, HD 131835, HD 161868, HD 170773, and HD 207129) have previously never been detected at submillimetre wavelengths. Three additional sources are marginally detected with >2.5-sigma significance. The best-fit beta parameters all lie between 0.1 and 0.8, in agreement with previous results indicating the presence of grains that are significantly larger than those in the ISM. From our relatively small sample we estimate f_dust proportional to t^(-alpha), with alpha~0.8-2.0, and identify an evolution of the characteristic radial dust distance R_dust that is consistent with the t^(1/3) increase predicted from models of self-stirred collisions in debris disks.
Persephone is a NASA concept mission study that addresses key questions raised by New Horizons encounters with Kuiper Belt objects (KBOs), with arguably the most important being Does Pluto have a subsurface ocean?. More broadly, Persephone would answ er four significant science questions: (1) What are the internal structures of Pluto and Charon? (2) How have the surfaces and atmospheres in the Pluto system evolved? (3) How has the KBO population evolved? (4) What are the particles and magnetic field environments of the Kuiper Belt? To answer these questions, Persephone has a comprehensive payload, and would both orbit within the Pluto system and encounter other KBOs. The nominal mission is 30.7 years long, with launch in 2031 on a Space Launch System (SLS) Block 2 rocket with a Centaur kick stage, followed by a 27.6 year cruise powered by existing radioisotope electric propulsion (REP) and a Jupiter gravity assist to reach Pluto in 2058. En route to Pluto, Persephone would have one 50- to 100-km-class KBO encounter before starting a 3.1 Earth-year orbital campaign of the Pluto system. The mission also includes the potential for an 8-year extended mission, which would enable the exploration of another KBO in the 100- to 150-km-size class. The mission payload includes 11 instruments: Panchromatic and Color High-Resolution Imager; Low-Light Camera; Ultra-Violet Spectrometer; Near-Infrared (IR) Spectrometer; Thermal IR Camera; Radio Frequency Spectrometer; Mass Spectrometer; Altimeter; Sounding Radar; Magnetometer; and Plasma Spectrometer. The nominal cost of this mission is $3.0B, making it a large strategic science mission.
We explore the impact of outer stellar companions on the occurrence rate of giant planets detected with radial velocities. We searched for stellar and planetary companions to a volume-limited sample of solar-type stars within 25 pc. Using adaptive op tics imaging from the Lick 3m and Palomar 200 Telescopes, we characterized the multiplicity of our sample stars, down to the bottom of the main sequence. With these data, we confirm field star multiplicity statistics from previous surveys. We combined three decades of radial velocity data from the California Planet Search with new RV data from Keck/HIRES and APF/Levy to search for planets in the same systems. Using an updated catalog of both stellar and planetary companions and injection/recovery tests to determine our sensitivity, we measured the occurrence rate of planets among the single and multiple star systems. We found that planets with masses of 0.1-10 $M_{Jup}$ and semi-major axes of 0.1-10 AU have an occurrence rate of $0.18^{+0.04}_{-0.03}$ planets per single star, and $0.12pm0.04$ planets per binary primary. Only one planet-hosting binary system in our sample had a binary separation $<100$ AU, and none had a separation $<50$ AU. We found planet occurrence rates of $0.20^{+0.07}_{-0.06}$ planets per star for binaries with separation $a_B > 100$ AU, and $0.04^{+0.04}_{-0.02}$ planets per star for binaries with separation $a_B<100$ AU. The similarity in the planet occurrence rate around single stars and wide primaries implies that wide binary systems should host more planets than single star systems, since they have more potential host stars. We estimated a system-wide planet occurrence rate of 0.3 planets per wide binary system for binaries with separations $a_B > 100$ AU. Finally, we found evidence that giant planets in binary systems have a different semi-major axis distribution than their counterparts in single star systems.
Aims: We aim to investigate the consequences of a fast massive stellar remnant - a black hole (BH) or a neutron star (NS) - encountering a planetary system. Methods: We modelled a close encounter between the actual Solar System (SS) and a $2,M_odot$ NS and a $10,M_odot$ BH, using a few-body symplectic integrator. We used a range of impact parameters, orbital phases at the start of the simulation derived from the current SS orbital parameters, encounter velocities, and incidence angles relative to the plane of the SS. Results: We give the distribution of possible outcomes, such as when the SS remains bound, when it suffers a partial or complete disruption, and in which cases the intruder is able to capture one or more planets, yielding planetary systems around a BH or a NS. We also show examples of the long-term stability of the captured planetary systems.
In its 16 years of scientific measurements, the Spitzer Space Telescope performed a number of ground breaking and key infrared measurements of Solar System objects near and far. Targets ranged from the smallest planetesimals to the giant planets, and have helped us reform our understanding of these objects while also laying the groundwork for future infrared space-based observations like those to be undertaken by the James Webb Space Telescope in the 2020s. In this first Paper, we describe how the Spitzer Space Telescope advanced our knowledge of Solar System formation and evolution via observations of small outer Solar System planetesimals, i.e., Comets, Centaurs, and Kuiper Belt Objects (KBOs). Relics from the early formation era of our Solar System, these objects hold important information about the processes that created them. The key Spitzer observations can be grouped into 3 broad classes: characterization of new Solar System objects (comets D/ISON 2012 S1, C/2016 R2, 1I/`Oumuamua); large population surveys of known object sizes (comets, Centaurs, and KBOs); and compositional studies via spectral measurements of body surfaces and emitted materials (comets, Centaurs, and KBOs).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا