ﻻ يوجد ملخص باللغة العربية
Cobalt pyrochlore fluoride NaCaCo$_2$F$_7$ is a disordered frustrated magnet composed of Co$^{2+}$ ions with an effective spin-$frac{1}{2}$ magnetic moment and exhibits spin freezing below $T_f sim$2.4 K. We perform ultrasound velocity measurements on a single crystal of the cubic NaCaCo$_2$F$_7$. The temperature dependence of the bulk modulus (the breathing elastic mode) exhibits Curie-type softening upon cooling below $sim$20 K down to $T_f$, which is suppressed by the magnetic field. This Curie-type softening should be a precursor to the enhancement of the strength of exchange disorder via the spin-lattice coupling, which causes the spin freezing. In contrast to the magnetic-field-suppressed Curie-type softening in the bulk modulus, the trigonal shear modulus exhibits softening with a characteristic minimum upon cooling, which is enhanced by the magnetic field at temperatures below $sim$20 K. This magnetic-field-enhanced elastic anomaly in the trigonal shear modulus suggests a coupling of the lattice to the dynamical spin-cluster state. For NaCaCo$_2$F$_7$, the observed elastic anomalies reveal an occurrence of magnetic-field-induced crossover from an isostructural lattice instability toward the spin freezing to a trigonal lattice instability arising from the emergent dynamical spin-cluster state.
We present time-of-flight neutron total scattering and polarized neutron scattering measurements of the magnetically frustrated compounds NaCaCo$_2$F$_7$ and NaSrCo$_2$F$_7$, which belong to a class of recently discovered pyrochlore compounds based o
The search for quantum spin liquids (QSL) -- topological magnets with fractionalized excitations -- has been a central theme in condensed matter and materials physics. While theories are no longer in short supply, tracking down materials has turned o
By means of ac magnetic-susceptibility measurements, we find evidence for a new magnetic phase of Tb$_2$Ti$_2$O$_7$ below about 140 mK in zero magnetic field. In magnetic fields parallel to [111], this phase---exhibiting frequency- and amplitude-depe
The single ion physics of Ho$_2$Ti$_2$O$_7$ is well-understood to produce strong Ising anisotropy, which is an essential ingredient to its low-temperature spin ice state. We present inelastic neutron scattering measurements on Ho$_2$Ti$_2$O$_7$ that
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70,