ﻻ يوجد ملخص باللغة العربية
Obstructive sleep Apnea (OSA) is a form of sleep disordered breathing characterized by frequent episodes of upper airway collapse during sleep. Pediatric OSA occurs in 1-5% of children and can related to other serious health conditions such as high blood pressure, behavioral issues, or altered growth. OSA is often diagnosed by studying the patients sleep cycle, the pattern with which they progress through various sleep states such as wakefulness, rapid eye-movement, and non-rapid eye-movement. The sleep state data is obtained using an overnight polysomnography test that the patient undergoes at a hospital or sleep clinic, where a technician manually labels each 30 second time interval, also called an epoch, with the current sleep state. This process is laborious and prone to human error. We seek an automatic method of classifying the sleep state, as well as a method to analyze the sleep cycles. This article is a pilot study in sleep state classification using two approaches: first, well use methods from the field of topological data analysis to classify the sleep state and second, well model sleep states as a Markov chain and visually analyze the sleep patterns. In the future, we will continue to build on this work to improve our methods.
This paper presents a method to identify substructures in NMR spectra of mixtures, specifically 2D spectra, using a bespoke image-based Convolutional Neural Network application. This is done using HSQC and HMBC spectra separately and in combination.
Persistent Homology is a fairly new branch of Computational Topology which combines geometry and topology for an effective shape description of use in Pattern Recognition. In particular it registers through Betti Numbers the presence of holes and the
Purpose: In this work, we present a collaboration to create a validation dataset of pathologist annotations for algorithms that process whole slide images (WSIs). We focus on data collection and evaluation of algorithm performance in the context of e
Reticulate evolutionary processes result in phylogenetic histories that cannot be modeled using a tree topology. Here, we apply methods from topological data analysis to molecular sequence data with reticulations. Using a simple example, we demonstra
We propose a method, based on persistent homology, to uncover topological properties of a priori unknown covariates of neuron activity. Our input data consist of spike train measurements of a set of neurons of interest, a candidate list of the known