ﻻ يوجد ملخص باللغة العربية
We present multi-band photometry covering $sim$ 5deg $times$ 5deg across $omega$ Cen collected with the Dark Energy Camera, combined to Hubble Space Telescope and Wide Field Imager data for the central regions. The unprecedented photometric accuracy and field coverage allowed us to confirm the different spatial distribution of blue and red main-sequence stars, and of red-giant branch (RGB) stars with different metallicities. The ratio of the number of blue to red main-sequence stars shows that the blue main-sequence sub-population has a more extended spatial distribution compared to the red main-sequence one, and the frequency of blue main-sequence stars increases at a distance of $sim$ 20 arcmin from $omega$ Cen center. Similarly, the more metal-rich RGB stars show a more extended spatial distribution compared to the more metal-poor ones in the outskirts of the cluster. Moreover, the centers of the distributions of metal-rich and metal-poor RGB stars are shifted in different directions with respect to the geometrical center of $omega$ Cen. We constructed stellar density profiles for the blue and red main-sequence stars; they confirm that the blue main-sequence sub-population has a more extended spatial distribution compared to the red main-sequence one in the outskirts of $omega$ Cen, as found based on the star number ratio. We also computed the ellipticity profile of $omega$ Cen, which has a maximum value of 0.16 at a distance of $sim$ 8 arcmin from the center, and a minimum of 0.05 at $sim$ 30 arcmin; the average ellipticity is $sim0.10$. The circumstantial evidence presented in this work suggests a merging scenario for the formation of the peculiar stellar system $omega$ Cen.
[Abbreviated] We have investigated the color-magnitude diagram of Omega Centauri and find that the blue main sequence (bMS) can be reproduced only by models that have a of helium abundance in the range Y=0.35-$0.40. To explain the faint subgiant bran
We examine the effects of gas expulsion on initially sub-structured and out-of-equilibrium star clusters. We perform N-body simulations of the evolution of star clusters in a static background potential before adjusting that potential to model gas ex
The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 23
The origin of multiple stellar populations in Globular Clusters (GCs) is one of the greatest mysteries of modern stellar astrophysics. N-body simulations suggest that the present-day dynamics of GC stars can constrain the events that occurred at high
Using Subaru/Suprime-Cam wide-field imaging and both Keck/ESI and LBT/MODS spectroscopy, we identify and characterize a compact star cluster, which we term NGC 3628-UCD1, embedded in a stellar stream around the spiral galaxy NGC 3628. The size and lu