ترغب بنشر مسار تعليمي؟ اضغط هنا

Fission Fragment Excitation Energy Sharing Beyond Scission

67   0   0.0 ( 0 )
 نشر من قبل Aurel Bulgac
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف A. Bulgac




اسأل ChatGPT حول البحث

A simplified, though realistic, model describing two receding and accelerating fission fragments, due to their mutual Coulomb repulsion, shows that fission fragments share excitation energy well after they ceased to exchange nucleons. This mechanism leads to a lower total kinetic energy of the fission fragments, particularly if the pygmy resonances in the fission fragments are excited. Even though the emphasis here is on fission, similar arguments apply to fragments in heavy-ion reactions.



قيم البحث

اقرأ أيضاً

The isotopic-yield distributions and kinematic properties of fragments produced in transfer-induced fission of 240Pu and fusion-induced fission of 250Cf, with 9 MeV and 45 MeV of excitation energy respectively, were measured in inverse kinematics wit h the spectrometer VAMOS. The kinematic properties of identified fission fragments allow to derive properties of the scission configuration such as the distance between fragments, the total kinetic energy, the neutron multiplicity, the total excitation energy, and, for the first time, the proton- and neutron-number sharing during the emergence of the fragments. These properties of the scission point are studied as functions of the fragment atomic number. The correlation between these observables, gathered in one single experiment and for two different fissioning systems at different excitation energies, give valuable information for the understanding and modeling of the fission process.
Calculations are presented for the time evolution of $^{240}$Pu from the proximity of the outer saddle point until the fission fragments are well separated, using the time-dependent density functional theory extended to superfluid systems. We have te sted three families of nuclear energy density functionals and found that all functionals exhibit a similar dynamics: the collective motion is highly dissipative and with little trace of inertial dynamics, due to the one-body dissipation mechanism alone. This finding justifies the validity of using the overdamped collective motion approach and to some extent the main assumptions in statistical models of fission. This conclusion is robust with respect to the nuclear energy density functional used. The configurations and interactions left out of the present theory framework only increase the role of the dissipative couplings. An unexpected finding is varying the pairing strength within a quite large range has only minor effects on the dynamics. We find notable differences in the excitation energy sharing between the fission fragments in the cases of spontaneous and induced fission. With increasing initial excitation energy of the fissioning nucleus more excitation energy is deposited in the heavy fragment, in agreement with experimental data on average neutron multiplicities.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
In the present paper, we explore the idea of isospin conservation in new situations and contexts based on the directions provided by our earlier works. We present the results of our calculations for the relative yields of neutron-rich fission fragmen ts emitted in fast neutron-induced fission, 238U (n, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. Our results successfully reproduced the gross features of partition wise fission fragments distribution of 238U (n, fission). This confirms that in all kinds of fission, isospin remains pure in neutron-rich systems even at high excitations. Thus, isospin can be proven as an important quantum number for the prediction of fission fragment distribution.
We study the consequences of the constant-temperature behaviour of nuclei in the superfluid regime for the exchange of excitation energy between two nuclei in thermal contact. This situation is realized at the scission configuration of fission at mod erate excitation energies. It is shown that all available excitation energy is transferred to the colder fragment. This effect explains why an increase of excitation energy is translated into an increase of the number of emitted neutrons for the heavy fission fragments only. This observation remained unexplained up to now.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا