ﻻ يوجد ملخص باللغة العربية
We study the oblivious matching problem, which aims at finding a maximum matching on a graph with unknown edge set. Any algorithm for the problem specifies an ordering of the vertex pairs. The matching is then produced by probing the pairs following the ordering, and including a pair if both of them are unmatched and there exists an edge between them. The unweighted (Chan et al. (SICOMP 2018)) and the vertex-weighted (Chan et al. (TALG 2018
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that
Let $G=(V, E)$ be a given edge-weighted graph and let its {em realization} $mathcal{G}$ be a random subgraph of $G$ that includes each edge $e in E$ independently with probability $p$. In the {em stochastic matching} problem, the goal is to pick a sp
Suppose that we are given an arbitrary graph $G=(V, E)$ and know that each edge in $E$ is going to be realized independently with some probability $p$. The goal in the stochastic matching problem is to pick a sparse subgraph $Q$ of $G$ such that the
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe
Over three decades ago, Karp, Vazirani and Vazirani (STOC90) introduced the online bipartite matching problem. They observed that deterministic algorithms competitive ratio for this problem is no greater than $1/2$, and proved that randomized algorit