ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey on 3D Skeleton-Based Action Recognition Using Learning Method

99   0   0.0 ( 0 )
 نشر من قبل Bin Ren
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D skeleton-based action recognition, owing to the latent advantages of skeleton, has been an active topic in computer vision. As a consequence, there are lots of impressive works including conventional handcraft feature based and learned feature based have been done over the years. However, previous surveys about action recognition mostly focus on the video or RGB data dominated methods, and the scanty existing reviews related to skeleton data mainly indicate the representation of skeleton data or performance of some classic techniques on a certain dataset. Besides, though deep learning methods has been applied to this field for years, there is no related reserach concern about an introduction or review from the perspective of deep learning architectures. To break those limitations, this survey firstly highlight the necessity of action recognition and the significance of 3D-skeleton data. Then a comprehensive introduction about Recurrent Neural Network(RNN)-based, Convolutional Neural Network(CNN)-based and Graph Convolutional Network(GCN)-based main stream action recognition techniques are illustrated in a data-driven manner. Finally, we give a brief talk about the biggest 3D skeleton dataset NTU-RGB+D and its new edition called NTU-RGB+D 120, accompanied with several existing top rank algorithms within those two datasets. To our best knowledge, this is the first research which give an overall discussion over deep learning-based action recognitin using 3D skeleton data.

قيم البحث

اقرأ أيضاً

127 - Haodong Duan , Yue Zhao , Kai Chen 2021
Human skeleton, as a compact representation of human action, has received increasing attention in recent years. Many skeleton-based action recognition methods adopt graph convolutional networks (GCN) to extract features on top of human skeletons. Des pite the positive results shown in previous works, GCN-based methods are subject to limitations in robustness, interoperability, and scalability. In this work, we propose PoseC3D, a new approach to skeleton-based action recognition, which relies on a 3D heatmap stack instead of a graph sequence as the base representation of human skeletons. Compared to GCN-based methods, PoseC3D is more effective in learning spatiotemporal features, more robust against pose estimation noises, and generalizes better in cross-dataset settings. Also, PoseC3D can handle multiple-person scenarios without additional computation cost, and its features can be easily integrated with other modalities at early fusion stages, which provides a great design space to further boost the performance. On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
The task of skeleton-based action recognition remains a core challenge in human-centred scene understanding due to the multiple granularities and large variation in human motion. Existing approaches typically employ a single neural representation for different motion patterns, which has difficulty in capturing fine-grained action classes given limited training data. To address the aforementioned problems, we propose a novel multi-granular spatio-temporal graph network for skeleton-based action classification that jointly models the coarse- and fine-grained skeleton motion patterns. To this end, we develop a dual-head graph network consisting of two interleaved branches, which enables us to extract features at two spatio-temporal resolutions in an effective and efficient manner. Moreover, our network utilises a cross-head communication strategy to mutually enhance the representations of both heads. We conducted extensive experiments on three large-scale datasets, namely NTU RGB+D 60, NTU RGB+D 120, and Kinetics-Skeleton, and achieves the state-of-the-art performance on all the benchmarks, which validates the effectiveness of our method.
103 - Maosen Li , Siheng Chen , Xu Chen 2019
3D skeleton-based action recognition and motion prediction are two essential problems of human activity understanding. In many previous works: 1) they studied two tasks separately, neglecting internal correlations; 2) they did not capture sufficient relations inside the body. To address these issues, we propose a symbiotic model to handle two tasks jointly; and we propose two scales of graphs to explicitly capture relations among body-joints and body-parts. Together, we propose symbiotic graph neural networks, which contain a backbone, an action-recognition head, and a motion-prediction head. Two heads are trained jointly and enhance each other. For the backbone, we propose multi-branch multi-scale graph convolution networks to extract spatial and temporal features. The multi-scale graph convolution networks are based on joint-scale and part-scale graphs. The joint-scale graphs contain actional graphs, capturing action-based relations, and structural graphs, capturing physical constraints. The part-scale graphs integrate body-joints to form specific parts, representing high-level relations. Moreover, dual bone-based graphs and networks are proposed to learn complementary features. We conduct extensive experiments for skeleton-based action recognition and motion prediction with four datasets, NTU-RGB+D, Kinetics, Human3.6M, and CMU Mocap. Experiments show that our symbiotic graph neural networks achieve better performances on both tasks compared to the state-of-the-art methods.
Action recognition based on skeleton data has recently witnessed increasing attention and progress. State-of-the-art approaches adopting Graph Convolutional networks (GCNs) can effectively extract features on human skeletons relying on the pre-define d human topology. Despite associated progress, GCN-based methods have difficulties to generalize across domains, especially with different human topological structures. In this context, we introduce UNIK, a novel skeleton-based action recognition method that is not only effective to learn spatio-temporal features on human skeleton sequences but also able to generalize across datasets. This is achieved by learning an optimal dependency matrix from the uniform distribution based on a multi-head attention mechanism. Subsequently, to study the cross-domain generalizability of skeleton-based action recognition in real-world videos, we re-evaluate state-of-the-art approaches as well as the proposed UNIK in light of a novel Posetics dataset. This dataset is created from Kinetics-400 videos by estimating, refining and filtering poses. We provide an analysis on how much performance improves on smaller benchmark datasets after pre-training on Posetics for the action classification task. Experimental results show that the proposed UNIK, with pre-training on Posetics, generalizes well and outperforms state-of-the-art when transferred onto four target action classification datasets: Toyota Smarthome, Penn Action, NTU-RGB+D 60 and NTU-RGB+D 120.
Human action recognition from skeleton data, fueled by the Graph Convolutional Network (GCN), has attracted lots of attention, due to its powerful capability of modeling non-Euclidean structure data. However, many existing GCN methods provide a pre-d efined graph and fix it through the entire network, which can loss implicit joint correlations. Besides, the mainstream spectral GCN is approximated by one-order hop, thus higher-order connections are not well involved. Therefore, huge efforts are required to explore a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for skeleton-based action recognition. Specifically, we enrich the search space by providing multiple dynamic graph modules after fully exploring the spatial-temporal correlations between nodes. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a sampling- and memory-efficient evolution strategy is proposed to search an optimal architecture for this task. The resulted architecture proves the effectiveness of the higher-order approximation and the dynamic graph modeling mechanism with temporal interactions, which is barely discussed before. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scaled datasets and the results show that our model gets the state-of-the-art results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا