ترغب بنشر مسار تعليمي؟ اضغط هنا

Episodic accretion constrained by a rich cluster of outflows

79   0   0.0 ( 0 )
 نشر من قبل Thomas Nony
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The accretion history of protostars remains widely mysterious even though it represents one of the best ways to understand the protostellar collapse that leads to the formation of stars. Molecular outflows are here used to characterize the protostellar accretion phase in W43-MM1. The W43-MM1 protocluster host a sufficient number of protostars to statistically investigate molecular outflows in a single, homogeneous region. We used the CO(2-1) and SiO(5-4) line datacubes, taken as part of an ALMA mosaic with a 2000 AU resolution, to search for protostellar outflows, evaluate the influence that the environment has on these outflows characteristics and put constraints on outflow variability in W43-MM1. We discovered a rich cluster of 46 outflow lobes, driven by 27 protostars with masses of 1-100 Msun. The complex environment inside which these outflow lobes develop has a definite influence on their length, limiting the validity of using outflows dynamical timescales as a proxy of the ejection timescale in clouds with high dynamics and varying conditions. We performed a detailed study of Position-Velocity (PV) diagrams of outflows that revealed clear events of episodic ejection. The time variability of W43-MM1 outflows is a general trend and is more generally observed than in nearby, low- to intermediate-mass star-forming regions. The typical timescale found between two ejecta, about 500 yr, is consistent with that found in nearby protostars. If ejection episodicity reflects variability in the accretion process, either protostellar accretion is more variable or episodicity is easier to detect in high-mass star-forming regions than in nearby clouds. The timescale found between accretion events could be resulting from disk instabilities, associated with bursts of inflowing gas arising from the dynamical environment of high-mass star-forming cores.



قيم البحث

اقرأ أيضاً

We observed the W51 high-mass star-forming complex with ALMAs longest-baseline configurations, achieving an angular resolution of $sim$20 milliarcseconds, corresponding to a linear resolution of $sim$100 au at $D_{mathrm{W51}}=5.4$ kpc. The observed region contains three high-mass protostars in which the dust continuum emission at 1.3 mm is optically-thick up to a radius $lesssim$1000 au and has brightness temperatures $gtrsim$200 K. The high luminosity ($gtrsim10^4$ L$_{odot}$) in the absence of free-free emission suggests the presence of massive stars ($Mgtrsim20$ M$_{odot}$) at the earliest stages of their formation. Our continuum images reveal remarkably complex and filamentary structures arising from compact cores. Molecular emission shows no clear signs of rotation nor infall on scales from 150 to 2000 au: we do not detect disks. The central sources drive young ($sim$100 years), fast ($sim 100$ km s$^{-1}$), powerful ($dot{M}>10^{-4}$ M$_{odot} yr^{-1}$), collimated outflows. These outflows provide indirect evidence of accretion disks on scales $rlesssim$100--500 au (depending on the object). The active outflows are connected to fossil flows that have different orientations on larger spatial scales, implying that the orientations of these small disks change over time. These results together support a variant of an accretion model for high-mass star formation in which massive protostars do not form a large, stable Keplerian disk during their early stages, but instead they accrete material from multiple massive flows with different angular momentum vectors. This scenario therefore contrasts with the simplified classic paradigm of a stable disk+jet system, which is the standard model for low-mass star formation, and provides an experimental confirmation of a multi-directional and unsteady accretion model for massive star formation.
Episodic accretion has been used to explain the wide range of protostellar luminosities, but its origin and influence on the star forming process are not yet fully understood. We present an ALMA survey of N$_2$H$^+$ ($1-0$) and HCO$^+$ ($3-2$) toward 39 Class 0 and Class I sources in the Perseus molecular cloud. N$_2$H$^+$ and HCO$^+$ are destroyed via gas-phase reactions with CO and H$_2$O, respectively, thus tracing the CO and H$_2$O snowline locations. A snowline location at a much larger radius than that expected from the current luminosity suggests that an accretion burst has occurred in the past which has shifted the snowline outward. We identified 18/18 Class 0 and 9/10 Class I post-burst sources from N$_2$H$^+$, and 7/17 Class 0 and 1/8 Class I post-burst sources from HCO$^+$.The accretion luminosities during the past bursts are found to be $sim10-100~L_odot$. This result can be interpreted as either evolution of burst frequency or disk evolution. In the former case, assuming that refreeze-out timescales are 1000 yr for ce{H2O} and 10,000 yr for CO, we found that the intervals between bursts increases from 2400 yr in the Class 0 to 8000 yr in the Class I stage. This decrease in the burst frequency may reflect that fragmentation is more likely to occur at an earlier evolutionary stage when the young stellar object is more prone to instability.
A white dwarf (WD) approaching the Chandrasekhar mass may in several cases undergo accretion-induced collapse (AIC) to a neutron star (NS) before a thermonuclear explosion ensues. It has generally been assumed that AIC does not produce a detectable s upernova (SN). If, however, the progenitor WD is rapidly rotating (as may be expected due to its prior accretion), a centrifugally supported disk forms around the NS upon collapse. We calculate the subsequent evolution of this accretion disk using time-dependent height-integrated simulations with initial conditions taken from the AIC calculations of Dessart et al. (2006). Initially, the disk is cooled by neutrinos and its composition is driven neutron-rich (electron fraction Ye ~ 0.1) by electron captures. However, as the disk viscously spreads, it is irradiated by neutrinos from the central proto-NS, which dramatically alters its neutron-to-proton ratio. We find that electron neutrino captures increase Ye to ~ 0.5 by the time that weak interactions in the disk freeze out. Because the disk becomes radiatively inefficient and begins forming alpha-particles soon after freeze out, powerful winds blow away most of the disks remaining mass. These Ye ~ 0.5 outflows synthesize up to a few times 1e-2 Msun in 56Ni. As a result, AIC may be accompanied by a radioactively powered SN-like transient that peaks on a timescale of ~ 1 day. Since few intermediate mass elements are likely synthesized, these Ni-rich explosions should be spectroscopically distinct from other SNe. PanSTARRs and the Palomar Transient Factory should detect a few AIC transients per year if their true rate is ~1/100 of the Type Ia rate, and LSST should detect hundreds per year. High cadence observations (< 1 day) are optimal for the detection and follow-up of AIC (abridged).
478 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic s pectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FU ors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically $10^{-7}$ to a few $10^{-4}$ $M_odot$ yr$^{-1}$, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve each individual outburst is studied in increasing detail. We summarize key observations of pre-main sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources -- all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا