ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal mechanical exfoliation of large-area 2D crystals

89   0   0.0 ( 0 )
 نشر من قبل Yuan Huang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality 2D materials but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental 2D crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended 2D crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a common rule that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of 2D materials.

قيم البحث

اقرأ أيضاً

We evaluate the effect of mechanical exfoliation of van der Waals materials on crystallographic orientations of the resulting flakes. Flakes originating from a single crystal of graphite, whose orientation is confirmed using STM, are studied using fa cet orientations and electron back-scatter diffraction (EBSD). While facets exhibit a wide distribution of angles after a single round of exfoliation ($ sigma approx 5^o $), EBSD shows that the true crystallographic orientations are more narrowly distributed ($ sigma approx 1.5^o $), and facets have an approximately error from the true orientation. Furthermore, we find that the majority of graphite fractures are along armchair lines, and that the cleavage process results in an increase of the zigzag lines portion. Our results place values on the rotation caused by a single round of the exfoliation process, and suggest that when a 1-2 degree precision is necessary, the orientation of a flake can be gauged by the orientation of the macroscopic single crystal from which it was exfoliated.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. Whil e significant progress to this goal was made, control over lattice orientation during growth still remains a challenge. This is needed in order to minimize or even avoid the formation of grain boundaries which can be detrimental to electrical, optical and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the uniform growth of high-quality centimeter-scale continuous monolayer MoS2 with control over lattice orientation. Using transmission electron microscopy we show that the monolayer film is composed of coalescing single islands that share a predominant lattice orientation due to an epitaxial growth mechanism. Raman and photoluminescence spectra confirm the high quality of the grown material. Optical absorbance spectra acquired over large areas show new features in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment, we can easily transfer the grown material and fabricate field-effect transistors on SiO2 substrates showing mobility superior to the exfoliated material.
We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional do ping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~ 0.3 k ohm.um, high on/off ratios up to > 109, and high drive currents exceeding 320 uA um-1. These favorable characteristics are combined with a two-terminal field-effect hole mobility ~ 2x102 cm2 V-1 s-1 at room temperature, which increases to >2x103 cm2 V-1 s-1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in post-silicon electronics.
As the focus of applied research in topological insulators (TI) evolves, the need to synthesize large-area TI films for practical device applications takes center stage. However, constructing scalable and adaptable processes for high-quality TI compo unds remains a challenge. To this end, a versatile van der Waals epitaxy (vdWE) process for custom-feature Bismuth Telluro-Sulfide TI growth and fabrication is presented, achieved through selective-area fluorination and modification of surface free-energy on mica. The TI features grow epitaxially in large single-crystal trigonal domains, exhibiting armchair or zigzag crystalline edges highly oriented with the underlying mica lattice and only two preferred domain orientations mirrored at $180^circ$. As-grown feature thickness dependence on lateral dimensions and denuded zones at boundaries are observed, as explained by a semi-empirical two-species surface migration model with robust estimates of growth parameters and elucidating the role of selective-area surface modification. Topological surface states contribute up to 60% of device conductance at room-temperature, indicating excellent electronic quality. High-yield microfabrication and the adaptable vdWE growth mechanism with readily alterable precursor and substrate combinations, lend the process versatility to realize crystalline TI synthesis in arbitrary shapes and arrays suitable for facile integration with processes ranging from rapid prototyping to scalable manufacturing.
We introduce the Computational 2D Materials Database (C2DB), which organises a variety of structural, thermodynamic, elastic, electronic, magnetic, and optical properties of around 1500 two-dimensional materials distributed over more than 30 differen t crystal structures. Material properties are systematically calculated by state-of-the art density functional theory and many-body perturbation theory (G$_0!$W$!_0$ and the Bethe-Salpeter Equation for $sim$200 materials) following a semi-automated workflow for maximal consistency and transparency. The C2DB is fully open and can be browsed online or downloaded in its entirety. In this paper, we describe the workflow behind the database, present an overview of the properties and materials currently available, and explore trends and correlations in the data. Moreover, we identify a large number of new potentially synthesisable 2D materials with interesting properties targeting applications within spintronics, (opto-)electronics, and plasmonics. The C2DB offers a comprehensive and easily accessible overview of the rapidly expanding family of 2D materials and forms an ideal platform for computational modeling and design of new 2D materials and van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا