ﻻ يوجد ملخص باللغة العربية
We develop a covariant kinetic theory for massive fermions in curved spacetime and external electromagnetic field based on quantum field theory. We derive four coupled semi-classical kinetic equations accurate at $O(hbar)$, which describe the transports of particle number and spin degrees of freedom. The relation with the chiral kinetic theory is discussed. As an application, we study the spin polarization in the presence of finite Riemann curvature and electromagnetic field in both local and global equilibrium states.
We revisit the chiral kinetic equation from high density effective theory approach, finding a chiral kinetic equation differs from counterpart derived from field theory in high order terms in the $O(1/mu)$ expansion, but in agreement with the equatio
A modified quantum kinetic equation which takes account of the noninertial features of rotating frame is proposed. The vector and axial-vector field components of the Wigner function for chiral fluids are worked out in a semiclassical scheme. It is d
We find that the recently developed kinetic theories with spin for massive and massless fermions are smoothly connected. By introducing a reference-frame vector, we decompose the dipole-moment tensor into electric and magnetic dipole moments. We show
Many-body systems with chiral fermions exhibit anomalous transport phenomena originated from quantum anomalies. Based on quantum field theory, we derive the kinetic theory for chiral fermions interacting with an external electromagnetic field and a b
We present the complete first order relativistic quantum kinetic theory with spin for massive fermions derived from the Wigner function formalism in a concise form that shows explicitly how the 32 Wigner equations reduce to 4 independent transport eq