ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon spectrum of underdoped $text{HgBa}_2text{CuO}_{4+delta}$ investigated by neutron scattering

109   0   0.0 ( 0 )
 نشر من قبل Dmitry Reznik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cuprates exhibit a prominent charge-density-wave (CDW) instability with wavevector along [100], i.e., the Cu-O bond direction. Whereas CDW order is most prominent at moderate doping and low temperature, there exists increasing evidence for dynamic charge correlations throughout a large portion of the temperature-doping phase diagram. In particular, signatures of incipient charge order have been observed as phonon softening and/or broadening near the CDW wavevector approximately half-way through the Brillouin zone. Most of this work has focused on moderately-doped cuprates, for which the CDW order is robust, or on optimally-doped samples, for which the superconducting transition temperature ($T_c$) attains its maximum. Here we present a time-of-flight neutron scattering study of phonons in simple-tetragonal $text{HgBa}_2text{CuO}_{4+delta}$ ($T_c = 55$ K) at a low doping level where prior work showed the CDW order to be weak. We employ and showcase a new software-based technique that mines the large number of measured Brillouin zones for useful data in order to improve accuracy and counting statistics. Density-functional theory has not provided an accurate description of phonons in $text{HgBa}_2text{CuO}_{4+delta}$, yet we find the right set of parameters to qualitatively reproduce the data. The notable exception is a dispersion minimum in the longitudinal Cu-O bond-stretching branch along [100]. This discrepancy suggests that, while CDW order is weak, there exist significant dynamic charge correlations in the optic phonon range at low doping, near the edge of the superconducting dome.

قيم البحث

اقرأ أيضاً

Phonons in nearly optimally doped HgBa$_2$CuO$_{4+delta}$ were studied by inelastic X-ray scattering. The dispersion of the low energy modes is well described by a shell model, while the Cu-O bond stretching mode at high energy shows strong softening towards the zone boundary, which deviates strongly from the model. This seems to be common in the hole-doped high-$T_mathrm{c}$ superconducting cuprates, and, based on this work, not related to a lattice distortion specific to each material.
127 - Y. Itoh , T. Machi , A. Yamamoto 2017
The magnitude of the powder spin susceptibility of an optimally doped superconductor HgBa$_2$CuO$_{4+delta}$ (Hg1201) in the normal state is found to be nearly the same as that of La$_{2-x}$Sr$_{x}$CuO$_{4}$ near the optimally doped level. The Stoner enhancement factor of Hg1201 is larger than that of La$_{2-x}$Sr$_{x}$CuO$_{4}$. The magnitude correlation of the Stoner enhancement factor is inconsistent with the effect of the recent theoretical Coulomb repulsion between 3$d$ electrons and that of the superexchange intereraction of a charge transfer type.
Using resonant X-ray diffraction and Raman spectroscopy, we study charge correlations and lattice dynamics in two model cuprates, HgBa$_{2}$CuO$_{4+delta}$ and HgBa$_{2}$CaCu$_{2}$O$_{6+delta}$. We observe a maximum of the characteristic charge order temperature around the same hole concentration ($p approx 0.09$) in both compounds, and concomitant pronounced anomalies in the lattice dynamics that involve the motion of atoms in and/or adjacent to the CuO$_2$ layers. These anomalies are already present at room temperature, and therefore precede the formation of the static charge correlations, and we attribute them to an instability of the CuO$_2$ layers. Our finding implies that the charge order in the cuprates is an emergent phenomenon, driven by a fundamental variation in both lattice and electronic properties as a function of doping.
HgBa$_{2}$CuO$_{4+delta}$ (Hg1201) has been shown to be a model cuprate for scattering, optical, and transport experiments, but angle-resolved photoemission spectroscopy (ARPES) data are still lacking owing to the absence of a charge-neutral cleavage plane. We report on progress in achieving the experimental conditions for which quasiparticles can be observed in the near-nodal region of the Fermi surface. The d-wave superconducting gap is measured and found to have a maximum of 39 meV. At low temperature, a kink is detected in the nodal dispersion at approximately 51 meV below the Fermi level, an energy that is different from other cuprates with comparable T$_c$. The superconducting gap, Fermi surface, and nodal band renormalization measured here provide a crucial momentum-space complement to other experimental probes.
The pseudogap phenomenon in cuprates is the most mysterious puzzle in the research of high-temperature superconductivity. In particular, whether the pseudogap is associated with a crossover or phase transition has been a long-standing controversial i ssue. The tetragonal cuprate HgBa$_2$CuO$_{4+delta}$, with only one CuO$_2$ layer per primitive cell, is an ideal system to tackle this puzzle. Here, we measure the anisotropy of magnetic susceptibility within the CuO$_2$ plane with exceptionally high-precision magnetic torque experiments. Our key finding is that a distinct two-fold in-plane anisotropy sets in below the pseudogap temperature $T^*$, which provides thermodynamic evidence for a nematic phase transition with broken four-fold symmetry. Most surprisingly, the nematic director orients along the diagonal direction of the CuO$_2$ square lattice, in sharp contrast to the bond nematicity reported in various iron-based superconductors and double-layer YBa$_2$Cu$_3$O$_{6+delta}$, where the anisotropy axis is along the Fe-Fe and Cu-O-Cu directions, respectively. Another remarkable feature is that the enhancement of the diagonal nematicity with decreasing temperature is suppressed around the temperature at which short-range charge-density-wave (CDW) formation occurs. This is in stark contrast to YBa$_2$Cu$_3$O$_{6+delta}$, where the bond nematicity is not influenced by the CDW. Our result suggests a competing relationship between diagonal nematic and CDW order in HgBa$_2$CuO$_{4+delta}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا