ﻻ يوجد ملخص باللغة العربية
A Monte Carlo simulation-based optimization of a multilayer 10B-RPC thermal neutron detector is performed targeting an increase in the counting rate capability while maintaining high (>50%) detection efficiency for thermal neutrons. The converter layer thicknesses of individual RPCs are optimized for several configurations of a detector containing a stack of 10 double gap RPCs. The results suggest that it is possible to reach a counting rate which is by a factor of eight higher in comparison to the rate of a detector with only one double-gap RPC. The effect of neutron scattering inside the detector contributing to the background is analyzed and design modifications of the first detector prototype, tested at neutron beam, are suggested.
The Multi-Blade is a Boron-10-based gaseous detector developed for neutron reflectometry instruments at the European Spallation Source (ESS) in Sweden. The main challenges for neutron reflectometry detectors are the instantaneous counting rate and sp
Multilayer position-sensitive 10B-RPC thermal neutron detectors offer an attractive combination of sub-millimeter spatial resolution and high (>50%) detection efficiency. Here we describe a new position reconstruction method based on a statistical ap
We present the results of the measurements of the detection efficiency for a 4.7 r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made
We present experimental results on the counting rate measurements for several single-gap $^{10}$B lined resistive plate chambers ($^{10}$B-RPCs) with anodes made from standard float glass, low resistivity glass and ceramic. The measurements were perf
The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and s