ﻻ يوجد ملخص باللغة العربية
The task of predicting missing entries of a matrix, from a subset of known entries, is known as textit{matrix completion}. In todays data-driven world, data completion is essential whether it is the main goal or a pre-processing step. Structured matrix completion includes any setting in which data is not missing uniformly at random. In recent work, a modification to the standard nuclear norm minimization (NNM) for matrix completion has been developed to take into account emph{sparsity-based} structure in the missing entries. This notion of structure is motivated in many settings including recommender systems, where the probability that an entry is observed depends on the value of the entry. We propose adjusting an Iteratively Reweighted Least Squares (IRLS) algorithm for low-rank matrix completion to take into account sparsity-based structure in the missing entries. We also present an iterative gradient-projection-based implementation of the algorithm that can handle large-scale matrices. Finally, we present a robust array of numerical experiments on matrices of varying sizes, ranks, and level of structure. We show that our proposed method is comparable with the adjusted NNM on small-sized matrices, and often outperforms the IRLS algorithm in structured settings on matrices up to size $1000 times 1000$.
We review a family of algorithms for Lyapunov- and Riccati-type equations which are all related to each other by the idea of emph{doubling}: they construct the iterate $Q_k = X_{2^k}$ of another naturally-arising fixed-point iteration $(X_h)$ via a s
For a linear matrix function $f$ in $X in R^{mtimes n}$ we consider inhomogeneous linear matrix equations $f(X) = E$ for $E eq 0$ that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using th
Matrix completion is a ubiquitous tool in machine learning and data analysis. Most work in this area has focused on the number of observations necessary to obtain an accurate low-rank approximation. In practice, however, the cost of observations is a
This paper introduces and analyzes a preconditioned modified of the Hermitian and skew-Hermitian splitting (PMHSS). The large sparse continuous Sylvester equations are solved by PMHSS iterative algorithm based on nonHermitian, complex, positive defin
In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely o