ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the N=20 and 28 Shell Gaps and 2-particle-2-hole states in the FSU Interaction

133   0   0.0 ( 0 )
 نشر من قبل Rebeka Sultana Lubna
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The FSU $spsdfp$ cross-shell interaction for the shell model was successfully fitted to a wide range of mostly intruder negative parity states of the $sd$ shell nuclei. This paper reports the application of the FSU interaction to systematically trace out the relative positions of the effective single-particle energies of the $0f_{7/2}$ and $1p_{3/2}$ orbitals, the evolution from normally ordered low-lying states to the Island of Inversion (IoI), and the behavior of a wide range of excited states with a $0f_{7/2}$ proton and neutron coupled to maximum spin of $7 hbar$. Above a proton number of about 13 the $0f_{7/2}$ orbital lies below that of $1p_{3/2}$, which is considered normal ordering, but systematically at $Z = 10$ to $12$ the orbitals cross. The calculations reproduce well the 2p2h - 0p0h inversion in the configurations of nuclei inside the IoI, they reproduce the absolute binding energies and the transition to normal ordering as the proton number approaches that of the neutrons. The important role of $1p_{3/2}$ neutron pairs in the IoI is also demonstrated. The calculations account well for the energies of the fully aligned states with 0, 1, or 2 individual $sd$ nucleon aligned in spin with the aligned $pi 0f_{7/2}$ - $ u 0f_{7/2}$ pair and reproduce well their systematic variation with $A$ and number of aligned $sd$ nucleons. The results presented in this paper give hope for the predictive power of the FSU interaction for more exotic nuclei to be explored in near future.

قيم البحث

اقرأ أيضاً

89 - O. Sorlin 2012
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E xperimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.
The ground-state spins and magnetic moments of $^{49,51}$K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE-CERN. For $^{49}$K a ground-state spin $I = 1/2$ was firmly established. The observed hyperfine st ructure of $^{51}$K requires a spin $I > 1/2$ and from its magnetic moment $mu(^{51}text{K})= +0.5129(22), mu_N$ a spin/parity $I^pi=3/2^+$ with a dominant $pi 1d_{3/2}^{-1}$ hole configuration was deduced. This establishes for the first time the re-inversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.
The exotic Borromean nucleus $^{20}$Mg with $N$ = 8, located at the proton drip-line provides a unique testing ground for nuclear forces and the evolution of shell structure in the neutron-deficient region. We report on the first observation of proto n unbound resonances together with bound states in $^{20}$Mg from the $^{20}$Mg($d$,$d$) reaction performed at TRIUMF. Phenomenological shell-model calculations offer a reasonable description. However, our experimental results present a challenge for current first-principles nuclear structure approaches and point to the need for improved chiral forces and {it ab initio} calculations. Furthermore, the differential cross section of the first excited state is compared with distorted-wave Born approximation calculations to deduce a neutron quadrupole deformation parameter of $beta_n$=0.46$pm$0.21. This provides the first indication of a possible weakening of the $N$ = 8 shell closure at the proton drip-line.
The separation between single particle levels in nuclei plays the dominant role in determining the location of the neutron drip line. The separation also provides a test of current crossed shell model interactions if the experimental data is such tha t multiple shells are involved. The present work uses the $^{14}$N(d, p)$^{15}$N reaction to extract the 2s$_{1/2}$, and 1d$_{5/2}$ total neutron single particle strengths and then compares these results with a shell model calculation using a p-sd crossed shell interaction to identify the J$^pi$ of all levels in $^{15}$N up to 12.8 MeV in excitation.
86 - C.M. Campbell , N. Aoi , D. Bazin 2006
Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weak ening in the N=28 shell closure in a neutron-rich nucleus devoid of deformation-driving proton collectivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا