ﻻ يوجد ملخص باللغة العربية
The FSU $spsdfp$ cross-shell interaction for the shell model was successfully fitted to a wide range of mostly intruder negative parity states of the $sd$ shell nuclei. This paper reports the application of the FSU interaction to systematically trace out the relative positions of the effective single-particle energies of the $0f_{7/2}$ and $1p_{3/2}$ orbitals, the evolution from normally ordered low-lying states to the Island of Inversion (IoI), and the behavior of a wide range of excited states with a $0f_{7/2}$ proton and neutron coupled to maximum spin of $7 hbar$. Above a proton number of about 13 the $0f_{7/2}$ orbital lies below that of $1p_{3/2}$, which is considered normal ordering, but systematically at $Z = 10$ to $12$ the orbitals cross. The calculations reproduce well the 2p2h - 0p0h inversion in the configurations of nuclei inside the IoI, they reproduce the absolute binding energies and the transition to normal ordering as the proton number approaches that of the neutrons. The important role of $1p_{3/2}$ neutron pairs in the IoI is also demonstrated. The calculations account well for the energies of the fully aligned states with 0, 1, or 2 individual $sd$ nucleon aligned in spin with the aligned $pi 0f_{7/2}$ - $ u 0f_{7/2}$ pair and reproduce well their systematic variation with $A$ and number of aligned $sd$ nucleons. The results presented in this paper give hope for the predictive power of the FSU interaction for more exotic nuclei to be explored in near future.
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E
The ground-state spins and magnetic moments of $^{49,51}$K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE-CERN. For $^{49}$K a ground-state spin $I = 1/2$ was firmly established. The observed hyperfine st
The exotic Borromean nucleus $^{20}$Mg with $N$ = 8, located at the proton drip-line provides a unique testing ground for nuclear forces and the evolution of shell structure in the neutron-deficient region. We report on the first observation of proto
The separation between single particle levels in nuclei plays the dominant role in determining the location of the neutron drip line. The separation also provides a test of current crossed shell model interactions if the experimental data is such tha
Excited states in 40Si have been established by detecting gamma-rays coincident with inelastic scattering and nucleon removal reactions on a liquid hydrogen target. The low excitation energy, 986(5) keV, of the 2+[1] state provides evidence of a weak