ﻻ يوجد ملخص باللغة العربية
Efficient spin/charge interconversion is desired to develop innovative spin-based devices. So far, the interconversion has been performed by using heavy atomic elements, strong spin-orbit interaction of which realizes the interconversion through the spin Hall effect and the Edelstein effect. We demonstrate highly efficient charge-to-spin conversion in a ferromagnetic metal/Cu/Al2O3 trilayers, which do not contain any heavy element. The resulting spin torque efficiency is higher than those of conventional spin Hall and Rashba systems consisting of heavy elements such as Pt and Bi. Our experimental results qualitatively deviate from typical behaviors arising from spin transport. However, they are surprisingly consistent with the behaviors arising from the orbital transport. Our results thus demonstrate a new direction for efficient charge-to-spin conversion through the orbital transport.
Spin orbit torques are of great interest for switching the magnetization direction in nanostructures, moving skyrmions and exciting spin waves. The standard method of determining their efficiency is by spin torque ferromagnetic resonance (ST-FMR), a
We show here theoretically and experimentally that a Rashba-split electron state inside a ferromagnet can efficiently convert a dynamical spin accumulation into an electrical voltage. The effect is understood to stem from the Rashba splitting but wit
We here demonstrate the interfacial spin to charge current conversion by means of spin pumping from a ferromagnetic Permalloy (Py: Ni80Fe20) to a Cu/Bi2O3 interface. A clear signature of the spin to charge current conversion was observed in voltage s
As a non-magnetic heavy metal is attached to a ferromagnet, a vertically flowing heat-driven spin current is converted to a transverse electric voltage, which is known as the longitudinal spin Seebeck effect (SSE). If the ferromagnet is a metal, this
SrTiO$_3$-based two-dimensional electron gases (2DEGs) can be formed through the deposition of epitaxial oxides like LaAlO$_3$ or of reactive metals such as Al. Such 2DEGs possess a finite Rashba spin-orbit coupling that has recently been harnessed t