ﻻ يوجد ملخص باللغة العربية
Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg-Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states.
The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite a
By combining a parameterized Hermitian matrix, the realignment matrix of the bipartite density matrix $rho$ and the vectorization of its reduced density matrices, we present a family of separability criteria, which are stronger than the computable cr
The density matrix of a graph is the combinatorial laplacian matrix of a graph normalized to have unit trace. In this paper we generalize the entanglement properties of mixed density matrices from combinatorial laplacian matrices of graphs discussed
We investigate the separability of quantum states based on covariance matrices. Separability criteria are presented for multipartite states. The lower bound of concurrence proposed in Phys. Rev. A. 75, 052320 (2007) is improved by optimizing the local orthonormal observables.
The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipart