ﻻ يوجد ملخص باللغة العربية
We study black hole solutions of $D=4$ Einstein-Maxwell theory coupled to a charged scalar field that are holographically dual to a $d=3$ conformal field theory with a non-vanishing chemical potential and constant magnetic field. We numerically construct black hole solutions that are dual to a superfluid phase with a periodic lattice of vortices. For the specific model we investigate, we find that the thermodynamically preferred configuration is given by a triangular lattice and moreover the vortices are associated with the lowest Landau level. We also construct black holes describing a lattice of vortices associated with the next to lowest Landau level and while theses are not thermodynamically preferred they exhibit some interesting features that could be realised for other holographic models.
We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systemati
Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint app
We examine how the (2+1)-dimensional AdS space is covered by the Fefferman-Graham system of coordinates for Minkowski, Rindler and static de Sitter boundary metrics. We find that, in the last two cases, the coordinates do not cover the full AdS space
In a holographic probe-brane model exhibiting a spontaneously spatially modulated ground state, we introduce explicit sources of symmetry breaking in the form of ionic and antiferromagnetic lattices. For the first time in a holographic model, we demo
We discuss the properties of codimension-two branes and compare them to codimension-one branes. In particular, we show that for deficit angle branes the brane energy momentum tensor is uniquely related to integration constants in the bulk solution. W