ترغب بنشر مسار تعليمي؟ اضغط هنا

Perpendicularly Magnetized Ni / Pt (001) Epitaxial Superlattice

105   0   0.0 ( 0 )
 نشر من قبل Takeshi Seki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A perpendicularly magnetized ferromagnetic layer is an important building block for recent/future highdensity spintronic memory applications. This paper reports on the fabrication of perpendicularly magnetized Ni / Pt superlattices and the characterization of their structures and magnetic properties. The optimization of film growth conditions allowed us to grow epitaxial Ni / Pt (001) superlattices on SrTiO$_{3}$ (001) single crystal substrates. We investigated their structural parameters and magnetic properties as a function of the Ni layer thickness, and obtained a high uniaxial magnetic anisotropy energy of 1.9 x 10$^{6}$ erg/cm$^{3}$ for a [Ni (4.0 nm) / Pt (1.0 nm)] superlattice. In order to elucidate the detailed mechanism on perpendicular magnetic anisotropy for the Ni / Pt (001) superlattices, the experimental results were compared with the first-principles calculations. It has been found that the strain effect is a prime source of the emergence of perpendicular magnetic anisotropy.

قيم البحث

اقرأ أيضاً

91 - T. Seki , Y. Sakuraba , K. Masuda 2020
We report an enhancement of the anomalous Nernst effect (ANE) in Ni/Pt (001) epitaxial superlattices. The transport and magneto-thermoelectric properties were investigated for the Ni/Pt superlattices with various Ni layer thicknesses (${it t}$). The anomalous Nernst coefficient was increased up to more than 1 ${mu}$V K$^{-1}$ for 2.0 nm ${leq}$ ${it t}$ ${leq}$ 4.0 nm, which was the remarkable enhancement compared to the bulk Ni. It has been found that the large transverse Peltier coefficient (${alpha}$$_{xy}$), reaching ${alpha}$$_{xy}$ = 4.8 A K$^{-1}$ m$^{-1}$ for ${it t}$ = 4.0 nm, plays a prime role for the enhanced ANE of the Ni/Pt (001) superlattices.
Buckminsterfullerene (C60) can exhibit ferromagnetism at the interface (called as a spinterface) when it is placed next to a ferromagnet (FM). Formation of such spinterface happens due to orbital hybridization and spin polarized charge transfer at th e interface. The spinterface can influence the domain size and dynamics of the organic/ferromagnetic heterostructure. Here, we have performed magnetic domain imaging and studied the relaxation dynamics in Pt/Co/C60/Pt system with perpendicular anisotropy. We have compared the results with its parent Pt/Co/Pt system. It is observed that presence of C60 in the Pt/Co/Pt system increases the anisotropy and a decrease in the bubble domain size. Further the switching time of Pt/Co/C60/Pt system is almost two times faster than Pt/Co/Pt system. We have also performed the spin polarized density functional theory (DFT) calculations to understand the underneath mechanism. DFT results show formation of a spin polarized spinterface which leads to an enhancement in anisotropy.
The demand of fast and power efficient spintronics devices with flexibility requires additional energy for magnetization manipulation. Stress/and strain have shown their potentials for tuning magnetic properties to the desired level. Here, we report a systematic study for the effect of both tensile and compressive stresses on the magnetic anisotropy (MA). Further the effect of stress on the domain structure and magnetization relaxation mechanism in a perpendicularly magnetized Co/Pt film has been studied. It is observed that a minimal in-plane tensile strain has increased the coercivity of the film by 38$%$ of its initial value, while a very small change of coercivity has been found under compressive strain. The size of ferromagnetic domains decreases under tensile strain, while no change is observed under the compressive strain. Magnetization relxation measured at sub-coercive fields yields longer relaxation time in the strained state.
Ferrimagnets, which contain the advantages of both ferromagnets (detectable moments) and antiferromagnets (ultrafast spin dynamics), have recently attracted great attention. Here we report the optimization of epitaxial growth of a tetragonal perpendi cularly magnetized ferrimagnet Mn2Ga on MgO. Electrical transport, magnetic properties and the anomalous Hall effect (AHE) were systematically studied. Furthermore, we successfully integrated high-quality epitaxial ferrimagnetic Mn2Ga thin films onto ferroelectric PMN-PT single crystals with a MgO buffer layer. It was found that the AHE of such a ferrimagnet can be effectively modulated by a small electric field over a large temperature range in a nonvolatile manner. This work thus demonstrates the great potential of ferrimagnets for developing high-density and low-power spintronic devices.
We carried out x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy and investigated cation valence states and spin and orbital magnetic moments in the inverse-spinel ferrimagnet Ni$_{1-x}$Co$_{2+y}$O$_{4-z}$ (NCO) epitaxial films with the perpendicular magnetic anisotropy. We show that the oxygen pressure P$_{O2}$ during the film growth by pulsed laser deposition influences not only the cation stoichiometry (site-occupation) but also the cation valence state. Our XAS results show that the Ni in the O$_{h}$-site is in the intermediate valence state between +2 and +3, Ni$^{(2+delta)+}$ (0<$delta$<1), whose nominal valence state (the $delta$ value) varies depending on P$_{O2}$. On the other hand, the Co in the octahedral (O$_{h}$) and tetrahedral (T$_{d}$) sites respectively have the valence state close to +3 and +2. We also find that the XMCD signals originate mainly from the T$_{d}$-site Co$^{2+}$ (Co$_{Td}$) and O$_{h}$-site Ni$^{(2+delta)+}$ (Ni$_{Oh}$), indicating that these cation valence states are the key in determining the magnetic and transport properties of NCO films. Interestingly, the valence state of Ni$^{(2+delta)+}$ that gives rise to the XMCD signal remains unchanged independent of P$_{O2}$. The electronic structure of Ni$^{(2+delta)+}$ that is responsible for the magnetic moment and electrical conduction differs from those of Ni$^{2+}$ and Ni$^{3+}$. In addition, the orbital magnetic moment originating from Co$_{Td}$ is as large as 0.14 $mu_{B}/Co_{Td}$ and parallel to the magnetization while the Ni$_{Oh}$ orbital moment is as small as 0.07 $mu_{B}/Ni_{Oh}$ and is rather isotropic. The Co$_{Td}$ therefore plays the key role in the perpendicular magnetic anisotropy of the films. Our results demonstrate the significance of the site-dependent cations valence states for the magnetic and transport properties of NCO films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا