ﻻ يوجد ملخص باللغة العربية
The decay dynamics of excited carriers in graphene have attracted wide scientific attention, as the gapless Dirac electronic band structure opens up relaxation channels that are not allowed in conventional materials. We report Fermi-level-dependent mid-infrared emission in graphene originating from a previously unobserved decay channel: hot plasmons generated from optically excited carriers. The observed Fermi-level dependence rules out Planckian light emission mechanisms and is consistent with the calculated plasmon emission spectra in photoinverted graphene. Evidence for bright hot plasmon emission is further supported by Fermi-level-dependent and polarization-dependent resonant emission from graphene plasmonic nanoribbon arrays under pulsed laser excitation. Spontaneous plasmon emission is a bright emission process as our calculations for our experimental conditions indicate that the spectral flux of spontaneously generated plasmons is several orders of magnitude higher than blackbody emission at a temperature of several thousand Kelvin. In this work, it is shown that a large enhancement in radiation efficiency of graphene plasmons can be achieved by decorating graphene surface with gold nanodisks, which serve as out-coupling scatterers and promote localized plasmon excitation when they are resonant with the incoming excitation light. These observations set a framework for exploration of ultrafast and ultrabright mid-infrared emission processes and light sources.
Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled
The photoresponse of graphene at mid-infrared frequencies is of high technological interest and is governed by fundamentally different underlying physics than the photoresponse at visible frequencies, as the energy of the photons and substrate phonon
We propose a two-dimensional plasmonic platform - periodically patterned monolayer graphene - which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-
Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into a measurable electrical signal at room temperature can enabl
The two-dimensionality of graphene and other layered materials can be exploited to simplify the theoretical description of their plasmonic and polaritonic modes. We present an analytical theory that allows us to simulate these excitations in terms of