ﻻ يوجد ملخص باللغة العربية
The trilayer nickelate Nd$_4$Ni$_3$O$_{10-delta}$ ($delta approx$ 0.15) was investigated by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. The crystal structure data suggest a higher Ni valence in the inner perovskite-like layer. At ambient pressure the resistivity shows a jump at 162 K, indicating a metal-to-metal transition (MMT). The MMT is also characterized by a magnetic susceptibility drop, a sharp specific-heat peak, and an isotropic lattice contraction. Below $sim$ 50 K, a resistivity upturn with a log$T$ dependence shows up, accompanying with a negative thermal expansion. External hydrostatic pressure suppresses the resistivity jump progressively, coincident with the diminution of the log$T$ behavior. The low-temperature electronic specific-heat coefficient is extracted to be $sim$ 150 mJ K$^{-2}$ mol-fu$^{-1}$, equivalent to $sim$ 50 mJ K$^{-2}$ mol-Ni$^{-1}$, indicating an unusual heavy-electron correlated state. The novel heavy-electron state as well as the logarithmic temperature dependence of resistivity is explained in terms of the Ni$^{3+}$ centered Kondo effect in the inner layer of the (NdNiO$_3$)$_3$ trilayers.
As a member of the Ruddlesden-Popper Ln$_{n+1}$Ni$_n$O$_{3n+1}$ series rare-earth-nickelates, the Pr4Ni$_3$O$_{10}$ consists of infinite quasi-two-dimensional perovskite-like Ni-O based layers. Although a metal-to-metal phase transition at Tpt = 157
We study the many-body electronic structure of the stoichiometric and electron-doped trilayer nickelate Pr$_4$Ni$_3$O$_8$ in comparison to that of the stoichiometric and hole-doped infinite layer nickelate NdNiO$_2$ within the framework of density fu
Ab initio calculations have been performed to unravel the origin of the recently found superlattice peaks in the trilayer nickelate La$_4$Ni$_3$O$_8$. These peaks arise from static charge ordering of Ni$^{2+}$/ Ni$^{1+}$ stripes oriented at 45$^{circ
We investigate the low temperature structural and physical properties of the trilayer nickelates R4Ni3O10 (R = La, Pr and Nd) using resistivity, thermopower, thermal conductivity, specific heat, high-resolution synchrotron powder X-ray diffraction an
Electronic structure calculations for spinel vanadate ZnV$_2$O$_4$ show that partial electronic delocalization in this system leads to structural instabilities. These are a consequence of the proximity to the itinerant-electron boundary, not being re