ترغب بنشر مسار تعليمي؟ اضغط هنا

SciServer: a Science Platform for Astronomy and Beyond

60   0   0.0 ( 0 )
 نشر من قبل Manuchehr Taghizadeh-Popp Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present SciServer, a science platform built and supported by the Institute for Data Intensive Engineering and Science at the Johns Hopkins University. SciServer builds upon and extends the SkyServer system of server-side tools that introduced the astronomical community to SQL (Structured Query Language) and has been serving the Sloan Digital Sky Survey catalog data to the public. SciServer uses a Docker/VM based architecture to provide interactive and batch mode server-side analysis with scripting languages like Python and R in various environments including Jupyter (notebooks), RStudio and command-line in addition to traditional SQL-based data analysis. Users have access to private file storage as well as personal SQL database space. A flexible resource access control system allows users to share their resources with collaborators, a feature that has also been very useful in classroom environments. All these services, wrapped in a layer of REST APIs, constitute a scalable collaborative data-driven science platform that is attractive to science disciplines beyond astronomy.

قيم البحث

اقرأ أيضاً

82 - Chenzhou Cui , Boliang He , Ce Yu 2017
Virtual Observatory (VO) is a data-intensively online astronomical research and education environment, which takes advantages of advanced information technologies to achieve seamless and global access to astronomical information. AstroCloud is a cybe r-infrastructure for astronomy research initiated by Chinese Virtual Observatory (China-VO) project, and also a kind of physical distributed platform which integrates lots of tasks such as telescope access proposal management, data archiving, data quality control, data release and open access, cloud based data processing and analysis. It consists of five application channels, i.e. observation, data, tools, cloud and public and is acting as a full lifecycle management system and gateway for astronomical data and telescopes. Physically, the platform is hosted in six cities currently, i.e. Beijing, Nanjing, Shanghai, Kunming, Lijiang and Urumqi, and serving more than 17 thousand users. Achievements from international Virtual Observatories and Cloud Computing are adopted heavily. In the paper, backgrounds of the project, architecture, Cloud Computing environment, key features of the system, current status and future plans are introduced.
Hundreds of thousands of astronomy education activities exist, but their discoverability and quality is highly variable. The web platform for astronomy education activities, astroEDU, presented in this paper tries to solve these issues. Using the fam iliar peer-review workflow of scientific publications, astroEDU is improving standards of quality, visibility and accessibility, while providing credibility to these astronomy education activities. astroEDU targets activity guides, tutorials and other educational activities in the area of astronomy education, prepared by teachers, educators and other education specialists. Each of the astroEDU activities is peer-reviewed by an educator as well as an astronomer to ensure a high standard in terms of scientific content and educational value. All reviewed materials are then stored in a free open online database, enabling broad distribution in a range of different formats. In this way astroEDU is not another web repository for educational resources but a mechanism for peer-reviewing and publishing high-quality astronomy education activities in an open access way. This paper will provide an account on the implementation and first findings of the use of astroEDU.
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are the Sun, the magnetized planets (Earth, Jupiter, Saturn), and our Galaxy, which are observed either from ground or space. Ground observatories can capture high resolution data streams with a high sensitivity. Conversely, space-borne instruments can observe below the ionospheric cut-off (at about 10 MHz) and can be placed closer to the studied object. Several tools have been developed in the last decade for sharing space physics data. Data visualization tools developed by various institutes are available to share, display and analyse space physics time series and spectrograms. The MASER team has selected a sub-set of those tools and applied them to low frequency radio astronomy. MASER also includes a Python software library for reading raw data from agency archives.
A coming resurgence of super heavy-lift launch vehicles has precipitated an immense interest in the future of crewed spaceflight and even future colonisation efforts. While it is true that a bright future awaits this sector, driven by commercial vent ures and the reignited interest of old space-faring nations, and the joining of new ones, little of this attention has been reserved for the science-centric applications of these launchers. The Arcanum mission is a proposal to use these vehicles to deliver an L-class observatory into a highly eccentric orbit around Neptune, with a wide-ranging suite of science goals and instrumentation tackling Solar System science, planetary science, Kuiper Belt Objects and exoplanet systems.
86 - D. Guberman 2017
With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا