ترغب بنشر مسار تعليمي؟ اضغط هنا

You foot the bill! Attacking NFC with passive relays

167   0   0.0 ( 0 )
 نشر من قبل Yuyi Sun
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Imagine when you line up in a store, the person in front of you can make you pay her bill by using a passive wearable device that forces a scan of your credit card without your awareness. An important assumption of todays Near-field Communication (NFC) enabled cards is the limited communication range between the commercial reader and the NFC cards -- a distance below 5~cm. Previous approaches to attacking this assumption effectively use mobile phones and active relays to enlarge the communication range, in order to attack the NFC cards. However, these approaches require a power supply at the adversary side, and can be easily localized when mobile phones or active relays transmit NFC signals. We propose ReCoil, a system that uses wearable passive relays to attack NFC cards by expanding the communication range to 49.6 centimeters, a ten-fold improvement over its intended commercial distance. ReCoil is a magnetically coupled resonant wireless power transfer system, which optimizes the energy transfer by searching the optimal geometry parameters. Specifically, we first narrow down the feasible area reasonably and design the ReCoil-Ant Colony Algorithm such that the relays absorb the maximum energy from the reader. In order to reroute the signal to pass over the surface of human body, we then design a half waist band by carefully analyzing the impact of the distance and orientation between two coils on the mutual inductance. Then, three more coils are added to the system to keep enlarging the communication range. Finally, extensive experiment results validate our analysis, showing that our passive relays composed of common copper wires and tunable capacitors expand the range of NFC attacks to 49.6 centimeters.



قيم البحث

اقرأ أيضاً

Near-Field Communication (NFC) is a modern technology for short range communication with a variety of applications ranging from physical access control to contactless payments. These applications are often heralded as being more secure, as they requi re close physical proximity and do not involve Wi-Fi or mobile networks. However, these systems are still vulnerable to security attacks at the time of transaction, as they require little to no additional authentication from the users end. In this paper, we propose a method to attack mobile-based NFC payment methods and make payments at locations far away from where the attack occurs. We evaluate our methods on our personal Apple and Google Pay accounts and demonstrate two successful attacks on these NFC payment systems.
Credit allows a lender to loan out surplus capital to a borrower. In the traditional economy, credit bears the risk that the borrower may default on its debt, the lender hence requires upfront collateral from the borrower, plus interest fee payments. Due to the atomicity of blockchain transactions, lenders can offer flash loans, i.e., loans that are only valid within one transaction and must be repaid by the end of that transaction. This concept has lead to a number of interesting attack possibilities, some of which were exploited in February 2020. This paper is the first to explore the implication of transaction atomicity and flash loans for the nascent decentralized finance (DeFi) ecosystem. We show quantitatively how transaction atomicity increases the arbitrage revenue. We moreover analyze two existing attacks with ROIs beyond 500k%. We formulate finding the attack parameters as an optimization problem over the state of the underlying Ethereum blockchain and the state of the DeFi ecosystem. We show how malicious adversaries can efficiently maximize an attack profit and hence damage the DeFi ecosystem further. Specifically, we present how two previously executed attacks can be boosted to result in a profit of 829.5k USD and 1.1M USD, respectively, which is a boost of 2.37x and 1.73x, respectively.
We focus on the problem of botnet orchestration and discuss how attackers can leverage decentralised technologies to dynamically control botnets with the goal of having botnets that are resilient against hostile takeovers. We cover critical elements of the Bitcoin blockchain and its usage for `floating command and control servers. We further discuss how blockchain-based botnets can be built and include a detailed discussion of our implementation. We also showcase how specific Bitcoin APIs can be used in order to write extraneous data to the blockchain. Finally, while in this paper, we use Bitcoin to build our resilient botnet proof of concept, the threat is not limited to Bitcoin blockchain and can be generalized.
We present a novel proof-of-concept attack named Trojan of Things (ToT), which aims to attack NFC- enabled mobile devices such as smartphones. The key idea of ToT attacks is to covertly embed maliciously programmed NFC tags into common objects routin ely encountered in daily life such as banknotes, clothing, or furniture, which are not considered as NFC touchpoints. To fully explore the threat of ToT, we develop two striking techniques named ToT device and Phantom touch generator. These techniques enable an attacker to carry out various severe and sophisticated attacks unbeknownst to the device owner who unintentionally puts the device close to a ToT. We discuss the feasibility of the attack as well as the possible countermeasures against the threats of ToT attacks.
Under U.S. law, marketing databases exist under almost no legal restrictions concerning accuracy, access, or confidentiality. We explore the possible (mis)use of these databases in a criminal context by conducting two experiments. First, we show how this data can be used for cybercasing by using this data to resolve the physical addresses of individuals who are likely to be on vacation. Second, we evaluate the utility of a bride to be mailing list augmented with data obtained by searching both Facebook and a bridal registry aggregator. We conclude that marketing data is not necessarily harmless and can represent a fruitful target for criminal misuse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا