ﻻ يوجد ملخص باللغة العربية
Betweenness centrality is a graph parameter that has been successfully applied to network analysis. In the context of computer networks, it was considered for various objectives, ranging from routing to service placement. However, as observed by Maccari et al. [INFOCOM 2018], research on betweenness centrality for improving protocols was hampered by the lack of a usable, fully distributed algorithm for computing this parameter. We resolve this issue by designing an efficient algorithm for computing betweenness centrality, which can be implemented by minimal modifications to any distance-vector routing protocol based on Bellman-Ford. The convergence time of our implementation is shown to be proportional to the diameter of the network
Dense granular systems subjected to an imposed shear stress undergo stick-slip dynamics with systematic patterns of dilation-compaction. During each stick phase, as the frictional strength builds up, the granular system dilates to accommodate shear s
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is
Betweenness centrality is a classic measure that quantifies the importance of a graph element (vertex or edge) according to the fraction of shortest paths passing through it. This measure is notoriously expensive to compute, and the best known algori
In this paper, we propose a novel distributed alternating direction method of multipliers (ADMM) algorithm with synergetic communication and computation, called SCCD-ADMM, to reduce the total communication and computation cost of the system. Explicit
Centrality rankings such as degree, closeness, betweenness, Katz, PageRank, etc. are commonly used to identify critical nodes in a graph. These methods are based on two assumptions that restrict their wider applicability. First, they assume the exact