ﻻ يوجد ملخص باللغة العربية
A system in thermal equilibrium with a bath will generally be in an athermal state, if the system-bath coupling is strong. In some cases, it will be possible to extract work from that athermal state, after disconnecting the system from the bath. We use this observation to devise a battery charging and storing unit, simply consisting of a system, acting as the battery, and a bath. The charging cycle---connect, let thermalize, disconnect, extract work---requires very little external control and the charged state of the battery, being a part of global thermal equilibrium, can be maintained indefinitely and for free. The efficiency, defined as the ratio of the extractable work stored in the battery and the total work spent on connecting and disconnecting, is always $leq 1$, which is a manifestation of the second law of thermodynamics. Moreover, coupling, being a resource for the device, is also a source of dissipation: the entropy production per charging cycle is always significant, strongly limiting the efficiency in all coupling strength regimes. We show that our general results also hold for generic microcanonical baths. We illustrate our theory on the Caldeira-Leggett model with a harmonic oscillator (the battery) coupled to a harmonic bath, for which we derive general asymptotic formulas in both weak and ultrastrong coupling regimes, for arbitrary Ohmic spectral densities. We show that the efficiency can be increased by connecting several copies of the battery to the bath. Finally, as a side result, we derive a general formula for Gaussian ergotropy, that is, the maximal work extractable by Gaussian unitary operations from Gaussian states of multipartite continuous-variable systems.
When studying thermalization of quantum systems, it is typical to ask whether a system interacting with an environment will evolve towards a local thermal state. Here, we show that a more general and relevant question is when does a system thermalize
We study the heat statistics of a multi-level $N$-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a hig
We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the univ
We introduce deterministic state-transformation protocols between many-body quantum states which can be implemented by low-depth Quantum Circuits (QC) followed by Local Operations and Classical Communication (LOCC). We show that this gives rise to a
In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings th