ترغب بنشر مسار تعليمي؟ اضغط هنا

Bound states in ultrastrong waveguide QED

69   0   0.0 ( 0 )
 نشر من قبل David Zueco
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the properties of bound states in finite-bandwidth waveguide QED beyond the Rotating Wave Approximation or excitation number conserving light-matter coupling models. Therefore, we extend the emph{standard} calculations to a broader range of light-matter strengths, in particular, in the so-called ultrastrong coupling regime. We do this using the Polaron technique. Our main results are as follows. We compute the spontaneous emission rate, which is renormalized as compared to the Fermi Golden Rule formula. We generalise the existence criteria for bound states, their properties and their role in the qubits thermalization. We discuss effective spin-spin interactions through both vacuum fluctuations and bound states. Finally, we sketch a perfect state-transfer protocol among distant emitters.

قيم البحث

اقرأ أيضاً

Bound states arise in waveguide QED systems with a strong frequency-dependence of the coupling between emitters and photonic modes. While exciting such bound-states with single photon wave-packets is not possible, photon-photon interactions mediated by the emitters can be used to excite them with two-photon states. In this letter, we use scattering theory to provide upper limits on this excitation probability for a general non-Markovian waveguide QED system and show that this limit can be reached by a two-photon wave-packet with vanishing uncertainty in the total photon energy. Furthermore, we also analyze multi-emitter waveguide QED systems with multiple bound states and provide a systematic construction of two-photon wave-packets that can excite a given superposition of these bound states. As specific examples, we study bound state trapping in waveguide QED systems with single and multiple emitters and a time-delayed feedback.
We propose a new method for frequency conversion of photons which is both versatile and deterministic. We show that a system with two resonators ultrastrongly coupled to a single qubit can be used to realize both single- and multiphoton frequency-con version processes. The conversion can be exquisitely controlled by tuning the qubit frequency to bring the desired frequency-conversion transitions on or off resonance. Considering recent experimental advances in ultrastrong coupling for circuit QED and other systems, we believe that our scheme can be implemented using available technology.
We develop a formalism for modelling exact time dynamics in waveguide quantum electrodynamics (QED) using the real-space approach. The formalism does not assume any specific configuration of emitters and allows the study of Markovian dynamics fully a nalytically and non-Markovian dynamics semi-analytically with a simple numerical integration step. We use the formalism to study subradiance, superradiance and bound states in continuum. We discuss new phenomena such as subdivision of collective decay rates into symmetric and anti-symmetric subsets and non-Markovian superradiance effects that can lead to collective decay stronger than Dicke superradiance. We also discuss possible applications such as pulse-shaping and coherent absorption. We thus broaden the range of applicability of real-space approaches beyond steady-state photon transport.
We give an exposure to diagrammatic techniques in waveguide QED systems. A particular emphasis is placed on the systems with delayed coherent quantum feedback. Specifically, we show that the $N$-photon scattering matrices in single-qubit waveguide QE D systems, within the rotating wave approximation, admit for a parametrization in terms of $N-1$-photon effective vertex functions and provide a detailed derivation of a closed hierarchy of generalized Bethe-Salpeter equations satisfied by these vertex functions. The advantage of this method is that the above mentioned integral equations hold independently of the number of radiation channels, their bandwidth, the dispersion of the modes they are supporting, and the structure of the radiation-qubit coupling interaction, thus enabling one to study multi-photon scattering problems beyond the Born-Markov approximation. Further, we generalize the diagrammatic techniques to the systems containing more than a single emitter by presenting an exact set of equations governing the generic two and three-photon scattering operators. The above described theoretical machinery is then showcased on the example of a three-photon scattering on a giant acoustic atom, recently studied experimentally [Nat. Phys. 15, 1123 (2019)].
When an atom is strongly coupled to a cavity, the two systems can exchange a single photon through a coherent Rabi oscillation. This process enables precise quantum-state engineering and manipulation of atoms and photons in a cavity, which play a cen tral role in quantum information and measurement. Recently, a new regime of cavity QED has been reached experimentally where the strength of the interaction between light and artificial atoms (qubits) becomes comparable to the atomic transition frequency or the resonance frequency of the cavity mode. Here we show that this regime can strongly modify the concept of vacuum Rabi oscillations, enabling multiphoton exchanges between the qubit and the resonator. We find that experimental state-of-the-art circuit- QED systems can undergo two- and three-photon vacuum Rabi oscillations. These anomalous Rabi oscillations can be exploited for the realization of efficient Fock-state sources of light and complex entangled states of qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا