ﻻ يوجد ملخص باللغة العربية
We present a semi-empirical calibration between the metallicity ($Z$) of Seyfert 2 Active Galactic Nuclei and the $N2$=log([N II]$lambda$6584/H$alpha$) emission-line intensity ratio. This calibration was derived through the [O III]$lambda$5007/[O II]$lambda$3727 versus $N2$ diagram containing observational data and photoionization model results obtained with the Cloudy code. The observational sample consists of 463 confirmed Seyfert 2 nuclei (redshift $z < 0.4$) taken from the Sloan Digital Sky Survey DR7 dataset. The obtained $Z$-$N2$ relation is valid for the range $0.3 < (Z/Z_{odot}) < 2.0$ which corresponds to $-0.7 < : (N2) < 0.6$. The effects of varying the ionization parameter ($U$), electron density and the slope of the spectral energy distribution on the $Z$ estimations are of the order of the uncertainty produced by the error measurements of $N2$. This result indicates the large reliability of our $Z-N2$ calibration. A relation between $U$ and the [O III]/[O II] line ratio, almost independent of other nebular parameter, was obtained.
We compare the oxygen abundance (O/H) of the Narrow Line Regions (NLRs) of Seyfert 2 AGNs obtained through strong-line methods and from direct measurements of the electron temperature (Te-method). The aim of this study is to explore the effects of th
We investigate the discrepancy between oxygen abundance estimations for narrow-line regions (NLRs) of Active Galactic Nuclei (AGNs) type Seyfert 2 derived by using direct estimations of the electron temperature (Te-method) and those derived by using
We build detailed composite models of photoionization and shock ionization based on the SUMA code to reproduce emission lines emitted from the Narrow Line Regions (NLR) of Seyfert 2 nuclei. The aim of this work is to investigate diagram AGN positions
We derive a new relation between the metallicity of Seyfert 2 Active Galactic Nuclei (AGNs) and the intensity of the narrow emission-lines ratio $N2O2$=log([N II]$lambda$6584/[O II]$lambda$3727). The calibration of this relation was performed determi
We derived a bi-dimensional calibration between the emission line ratios R23=([O II]3726+3729+[O II]4959+5007)/Hb, P=[([O II]4959+5007)/Hb]/R23 and the oxygen abundance relative to hydrogen (O/H) in the gas phase of Seyferts 1 and 2 nuclei. In view o