ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary Value Exploration for Software Analysis

256   0   0.0 ( 0 )
 نشر من قبل Felix Dobslaw
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For software to be reliable and resilient, it is widely accepted that tests must be created and maintained alongside the software itself. One safeguard from vulnerabilities and failures in code is to ensure correct behavior on the boundaries between the input space sub-domains. So-called boundary value analysis (BVA) and boundary value testing (BVT) techniques aim to exercise those boundaries and increase test effectiveness. However, the concepts of BVA and BVT themselves are not generally well defined, and it is not clear how to identify relevant sub-domains, and thus the boundaries delineating them, given a specification. This has limited adoption and hindered automation. We clarify BVA and BVT and introduce Boundary Value Exploration (BVE) to describe techniques that support them by helping to detect and identify boundary inputs. Additionally, we propose two concrete BVE techniques based on information-theoretic distance functions: (i) an algorithm for boundary detection and (ii) the usage of software visualization to explore the behavior of the software under test and identify its boundary behavior. As an initial evaluation, we apply these techniques on a much used and well-tested date handling library. Our results reveal questionable behavior at boundaries highlighted by our techniques. In conclusion, we argue that the boundary value exploration that our techniques enable is a step towards automated boundary value analysis and testing, fostering their wider use and improving test effectiveness and efficiency.

قيم البحث

اقرأ أيضاً

Software process improvement (SPI) is a means to an end, not an end in itself (e.g., a goal is to achieve shorter time to market and not just compliance to a process standard). Therefore, SPI initiatives ought to be streamlined to meet the desired va lues for an organization. Through a literature review, seven secondary studies aggregating maturity models and assessment frameworks were identified. Furthermore, we identified six proposals for building a new maturity model. We analyzed the existing maturity models for (a) their purpose, structure, guidelines, and (b) the degree to which they explicitly consider values and benefits. Based on this analysis and utilizing the guidelines from the proposals to build maturity models, we have introduced an approach for developing a value-driven approach for SPI. The proposal leveraged the benefits-dependency networks. We argue that our approach enables the following key benefits: (a) as a value-driven approach, it streamlines value-delivery and helps to avoid unnecessary process interventions, (b) as a knowledge-repository, it helps to codify lessons learned i.e. whether adopted practices lead to value realization, and (c) as an internal process maturity assessment tool, it tracks the progress of process realization, which is necessary to monitor progress towards the intended values.
When it comes to industrial organizations, current collaboration efforts in software engineering research are very often kept in-house, depriving these organizations off the skills necessary to build independent collaborative research. The current tr end, towards empirical software engineering research, requires certain standards to be established which would guide these collaborative efforts in creating a strong partnership that promotes independent, evidence-based, software engineering research. This paper examines key enabling factors for an efficient and effective industry-academia collaboration in the software testing domain. A major finding of the research was that while technology is a strong enabler to better collaboration, it must be complemented with industrial openness to disclose research results and the use of a dedicated tooling platform. We use as an example an automated test generation approach that has been developed in the last two years collaboratively with Bombardier Transportation AB in Sweden.
Modern software development is increasingly dependent on components, libraries and frameworks coming from third-party vendors or open-source suppliers and made available through a number of platforms (or forges). This way of writing software puts an emphasis on reuse and on composition, commoditizing the services which modern applications require. On the other hand, bugs and vulnerabilities in a single library living in one such ecosystem can affect, directly or by transitivity, a huge number of other libraries and applications. Currently, only product-level information on library dependencies is used to contain this kind of danger, but this knowledge often reveals itself too imprecise to lead to effective (and possibly automated) handling policies. We will discuss how fine-grained function-level dependencies can greatly improve reliability and reduce the impact of vulnerabilities on the whole software ecosystem.
The analysis and proper documentation of the properties of closed-loop control software presents many distinct aspects from the analysis of the same software running open-loop. Issues of physical system representations arise, and it is desired that s uch representations remain independent from the representations of the control program. For that purpose, a concurrent program representation of the plant and the control processes is proposed, although the closed-loop system is sufficiently serialized to enable a sequential analysis. While dealing with closed-loop system properties, it is also shown by means of examples how special treatment of nonlinearities extends from the analysis of control specifications to code analysis.
151 - Marko Ristin 2021
Digitalization is forging its path in the architecture, construction, engineering, operation (AECO) industry. This trend demands not only solutions for data governance but also sophisticated cyber-physical systems with a high variety of stakeholder b ackground and very complex requirements. Existing approaches to general requirements engineering ignore the context of the AECO industry. This makes it harder for the software engineers usually lacking the knowledge of the industry context to elicit, analyze and structure the requirements and to effectively communicate with AECO professionals. To live up to that task, we present an approach and a tool for collecting AECO-specific software requirements with the aim to foster reuse and leverage domain knowledge. We introduce a common scenario space, propose a novel choice of an ubiquitous language well-suited for this particular industry and develop a systematic way to refine the scenario ontologies based on the exploration of the scenario space. The viability of our approach is demonstrated on an ontology of 20 practical scenarios from a large project aiming to develop a digital twin of a construction site.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا