ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of the mean-field interacting quantum kicked rotor

182   0   0.0 ( 0 )
 نشر من قبل Adam Rancon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dynamics of the many-body atomic kicked rotor with interactions at the mean-field level, governed by the Gross-Pitaevskii equation. We show that dynamical localization is destroyed by the interaction, and replaced by a subdiffusive behavior. In contrast to results previously obtained from a simplified version of the Gross-Pitaevskii equation, the subdiffusive exponent does not appear to be universal. By studying the phase of the mean-field wave function, we propose a new approximation that describes correctly the dynamics at experimentally relevant times close to the start of subdiffusion, while preserving the reduced computational cost of the former approximation.



قيم البحث

اقرأ أيضاً

The study of quantum resonances in the chaotic atom-optics kicked rotor system is of interest from two different perspectives. In quantum chaos, it marks out the regime of resonant quantum dynamics in which the atomic cloud displays ballistic mean en ergy growth due to coherent momentum transfer. Secondly, the sharp quantum resonance peaks are useful in the context of measurement of Talbot time, one of the parameter that helps in precise measurement of fine structure constant. Most of the earlier works rely on fidelity based approach and have proposed Talbot time measurement through experimental determination of the momentum space probability density of the periodically kicked atomic cloud. Fidelity approach has the disadvantage that phase reversed kicks need to be imparted as well which potentially leads to dephasing. In contrast to this, in this work, it is theoretically shown that, without manipulating the kick sequences, the quantum resonances through position space density can be measured more accurately and is experimentally feasible as well.
We propose two experimentally feasible methods based on atom interferometry to measure the quantum state of the kicked rotor.
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to t he multifractal dimension $d_2$. Our analysis is based on an experimentally realizable setup, the quantum kicked rotor with quasi-periodic temporal driving, an effectively 3-dimensional disordered system recently exploited to explore the physics of the Anderson transition with cold atoms.
This work aims at giving Trotter errors in digital quantum simulation (DQS) of collective spin systems an interpretation in terms of quantum chaos of the kicked top. In particular, for DQS of such systems, regular dynamics of the kicked top ensures c onvergence of the Trotterized time evolution, while chaos in the top, which sets in above a sharp threshold value of the Trotter step size, corresponds to the proliferation of Trotter errors. We show the possibility to analyze this phenomenology in a wide variety of experimental realizations of the kicked top, ranging from single atomic spins to trapped-ion quantum simulators which implement DQS of all-to-all interacting spin-1/2 systems. These platforms thus enable in-depth studies of Trotter errors and their relation to signatures of quantum chaos, including the growth of out-of-time-ordered correlators.
We investigate precursors of critical behavior in the quasienergy spectrum due to the dynamical instability in the kicked top. Using a semiclassical approach, we analytically obtain a logarithmic divergence in the density of states, which is analogou s to a continuous excited state quantum phase transition in undriven systems. We propose a protocol to observe the cusp behavior of the magnetization close to the critical quasienergy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا