ترغب بنشر مسار تعليمي؟ اضغط هنا

The effects of surface fossil magnetic fields on massive star evolution: II. Implementation of magnetic braking in MESA and implications for the evolution of surface rotation in OB stars

81   0   0.0 ( 0 )
 نشر من قبل Zsolt Keszthelyi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time evolution of angular momentum and surface rotation of massive stars is strongly influenced by fossil magnetic fields via magnetic braking. We present a new module containing a simple, comprehensive implementation of such a field at the surface of a massive star within the Modules for Experiments in Stellar Astrophysics (MESA) software instrument. We test two limiting scenarios for magnetic braking: distributing the angular momentum loss throughout the star in the first case, and restricting the angular momentum loss to a surface reservoir in the second case. We perform a systematic investigation of the rotational evolution using a grid of OB star models with surface magnetic fields ($M_star=5-60$ M$_odot$, $Omega/Omega_{rm crit} =0.2-1.0$, $B_{rm p} =1-20$ kG). We then employ a representative grid of B-type star models ($M_star=5, 10, 15$ M$_odot$, $Omega/Omega_{rm crit} =0.2 , 0.5, 0.8$, $B_{rm p} = 1, 3 ,10, 30$ kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B-type stars. We infer that magnetic massive stars arrive at the zero age main sequence with a range of rotation rates, rather than with one common value. In particular, some stars are required to have close-to-critical rotation at the ZAMS. However, magnetic braking yields surface rotation rates converging to a common low value, making it difficult to infer the initial rotation rates of evolved, slowly-rotating stars.

قيم البحث

اقرأ أيضاً

Surface magnetic fields have a strong impact on stellar mass loss and rotation and, as a consequence, on the evolution of massive stars. In this work we study the influence of an evolving dipolar surface fossil magnetic field with an initial field st rength of 4 kG on the characteristics of 15 M$_{odot}$ solar metallicity models using the Geneva stellar evolution code. Non-rotating and rotating models considering two different scenarios for internal angular momentum transport are computed, including magnetic field evolution, mass-loss quenching, and magnetic braking. Magnetic field evolution results in weakening the initially strong magnetic field, however, in our models an observable magnetic field is still maintained as the star evolves towards the red supergiant phase. At the given initial mass of the models, mass-loss quenching is modest. Magnetic braking greatly enhances chemical element mixing if radial differential rotation is allowed for, on the other hand, the inclusion of surface magnetic fields yields a lower surface enrichment in the case of near solid-body rotation. Models including surface magnetic fields show notably different trends on the Hunter diagram (plotting nitrogen abundance vs $v sin i$) compared to those that do not. The magnetic models agree qualitatively with the anomalous `Group 2 stars, showing slow surface rotation and high surface nitrogen enhancement on the main sequence.
$tau$ Sco, a well-studied magnetic B-type star in the Upper Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configura tion which is unusual for a magnetic massive star. We employ the CMFGEN radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ MESA and GENEC stellar evolution models accounting for the effects of surface magnetic fields. To reconcile $tau$ Scos properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for $tau$ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain $tau$ Scos simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of $tau$ Sco.
Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculat ions taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of `heavy stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.
The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which s hould be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).
Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be o bservable in their surface magnetic fields. We present here the first results of an observational effort aimed at characterizing the evolution of stellar magnetic fields through this critical phase. We observed stars from open clusters and associations, which range from 20 to 600 Myr, and used Zeeman Doppler Imaging to characterize their complex magnetic fields. We find a clear trend towards weaker magnetic fields for older ages, as well as a tight correlation between magnetic field strength and Rossby number over this age range. Comparing to results for younger T Tauri stars, we observe a very significant change in magnetic strength and geometry, as the radiative core develops during the late pre-main sequence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا