ﻻ يوجد ملخص باللغة العربية
The detection of gravitational waves from neutron star merger events has opened up a new field of multi-messenger astronomy linking gravitational waves events to short-gamma ray bursts and kilonova afterglows. A further - yet to be discovered - electromagnetic counterpart is precursor emission produced by the non-trivial interaction of the magnetospheres of the two neutron stars prior to merger. By performing special-relativistic force-free simulations of orbiting neutron stars we discuss the effect of different magnetic field orientations and show how the emission can be significantly enhanced by differential motion present in the binary, either due to stellar spins or misaligned stellar magnetospheres. We find that the built-up of twist in the magnetic flux tube connecting the two stars can lead to the repeated emission of powerful flares for a variety of orbital configurations. We also discuss potential coherent radio emission mechanisms in the flaring process.
X-ray observations of some short gamma-ray bursts indicate that a long-lived neutron star can form as a remnant of a binary neutron star merger. We develop a gravitational-wave detection pipeline for a long-lived binary neutron star merger remnant gu
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remn
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary
The afterglows to gamma-ray bursts (GRBs) are due to synchrotron emission from shocks generated as an ultra-relativistic outflow decelerates. A forward and a reverse shock will form, however, where emission from the forward shock is well studied as a