ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain Induced Relaxor-type Ferroelectricity Near Room Temperature in Delafossite CuCrO2

68   0   0.0 ( 0 )
 نشر من قبل Archna Sagdeo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polycrystalline samples of CuCrO2 were synthesized by solid state reaction method. Temperature dependent dielectric measurements, synchrotron x-ray diffraction (SXRD), pyroelectric current and Raman measurements have been performed on these samples. Evidences of the presence of relaxor type ferroelectricity, which otherwise have gone unnoticed in CuCrO2 system (a member of delafossite family) near room temperature, have been presented. Presence of broad maximum in dielectric permittivity and its frequency dispersion indicates relaxor-type ferroelectricity in CuCrO2 near room temperature. Careful analysis of temperature dependent SXRD data and Raman spectroscopic data indicates that the distorted CrO6 octahdera, is giving rise to strain in the sample. Due to this strain, polar regions are forming in an otherwise non-polar matrix, which is giving rise to relaxor type ferroelectricity in the sample. Regularization of CrO6 octahedra and disappearance of disorder induced peak in Raman spectra at high temperatures could be the reason behind observed dielectric anomaly in this sample. Present investigations propose that relaxor type ferroelectricity near room temperature is an inherent property of the CuCrO2 system, making it a fascinating material to be explored further.



قيم البحث

اقرأ أيضاً

Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180{deg} ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.
We have studied ferroelectricity and photovoltaic effects in atomic layer deposited (ALD) 40-nm thick SnTiO$_{x}$ films deposited directly onto p-type (001)Si substrate. These films showed well-saturated, square and repeatable hysteresis loops with r emnant polarization of 1.5 $mu$C/cm$^{2}$ at room temperature, as detected by out-of-plane polarization versus electric field (P-E) and field cycling measurements. A photo-induced enhancement in ferroelectricity was also observed as the spontaneous polarization increased under white-light illumination. The ferroelectricity exhibits relaxor characteristics with dielectric peak shifting from ca. T = 600 K at f = 1 MHz to ca. 500 K at 100 Hz. Moreover, our films showed ferroelectric photovoltaic behavior under the illumination of a wide spectrum of light, from visible to ultraviolet regions. A combination of experiment and theoretical calculation provided optical band gap of SnTiO$_{x}$ films which lies in the visible range of white light spectra. Our study leads a way to develop green ferroelectric SnTiO$_{x}$ thin films, which are compatible to semiconducting processes, and can be used for various ferroelectric and dielectric applications.
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanosca le domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >=20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
2D van der Waals ferroelectric semiconductors have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric resistive switchi ng for out-of-plane 2D ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, a micrometer-size monolayer SnS is grown on mica by physical vapor deposition, and in-plane ferroelectric switching is demonstrated with a two-terminal device at room temperature (RT). SnS has been commonly regarded to exhibit the odd-even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust RT ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers. The lack of the odd-even effect probably originates from the interaction with the mica substrate, suggesting the possibility of controlling the stacking sequence of multilayer SnS, going beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a new platform for in-plane ferroelectrics.
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magneti c field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T. This enables the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا