ﻻ يوجد ملخص باللغة العربية
With optical spectroscopy we provide evidence that the insulator-metal transition in Sr$_2$Ir$_{1-x}$Rh$_{x}$O$_{4}$ occurs close to a crossover from the Mott- to the Slater-type. The Mott-gap at $x = 0$ persists to high temperature and evolves without an anomaly across the N{e}el temperature, $T_N$. Upon Rh-doping, it collapses rather rapidly and vanishes around $x = 0.055$. Notably, just as the Mott-gap vanishes yet another gap appears that is of the Slater-type and develops right below $T_N$. This Slater-gap is only partial and is accompanied by a reduced scattering rate of the remaining free carriers, similar as in the parent compounds of the iron arsenide superconductors.
An anapole state that breaks inversion and time reversal symmetries with preserving translation symmetry of underlying lattice has aroused great interest as a new quantum state, but only a few candidate materials have been reported. Recently, in a sp
Hidden magnetic order of Sr$_2$Ir$_{1-x}$Rh$_x$O$_4$, $x = 0.05$ and 0.1, has been studied using muon spin relaxation spectroscopy. In zero applied field and weak longitudinal fields ($mu_0H_L lesssim 2$~mT), muon spin relaxation data can be well des
It was found that, although isovalent, Rh substituted for Ir in Sr$_2$IrO$_4$ may trap one electron inducing effective hole doping of Ir sites. Transport and thermoelectric measurements on Sr$_2$Ir$_{1-x}$Rh$_x$O$_4$ single crystals presented here re
The path from a Mott insulating phase to high temperature superconductivity encounters a rich set of unconventional phenomena involving the insulator-to-metal transition (IMT) such as emergent electronic orders and pseudogaps that ultimately affect t
Layered 5$d$ transition iridium oxides, Sr$_2$(Ir,Rh)O$_4$, are described as unconventional Mott insulators with strong spin-orbit coupling. The undoped compound, Sr$_2$IrO$_4$, is a nearly ideal two-dimensional pseudospin-$1/2$ Heisenberg antiferrom