ﻻ يوجد ملخص باللغة العربية
We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 AU, with a power-law index of around $-4$. Based on our measurements, we demonstrate that either a significant ($>50%$) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfven waves.
We analyze magnetic field data from the first six encounters of PSP, three Helios fast streams and two Ulysses south polar passes covering heliocentric distances $0.1lesssim Rlesssim 3$ au. We use this data set to statistically determine the evolutio
Knowing the lengthscales at which turbulent fluctuations dissipate is key to understanding the nature of weakly compressible magnetohydrodynamic turbulence. We use radio wavelength interferometric imaging observations which measure the extent to whic
The first two orbits of the Parker Solar Probe (PSP) spacecraft have enabled the first in situ measurements of the solar wind down to a heliocentric distance of 0.17 au (or 36 Rs). Here, we present an analysis of this data to study solar wind turbule
Understanding the physical processes in the solar wind and corona which actively contribute to heating, acceleration, and dissipation is a primary objective of NASAs Parker Solar Probe (PSP) mission. Observations of coherent electromagnetic waves at
textit{Parker Solar Probe} has shown the ubiquitous presence of strong magnetic field deflections, namely switchbacks, during its first perihelion where it was embedded in a highly Alfvenic slow stream. Here, we study the turbulent magnetic fluctuati