ترغب بنشر مسار تعليمي؟ اضغط هنا

Massively parallel finite difference elasticity using block-structured adaptive mesh refinement with a geometric multigrid solver

58   0   0.0 ( 0 )
 نشر من قبل Brandon Runnels
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computationally solving the equations of elasticity is a key component in many materials science and mechanics simulations. Phenomena such as deformation-induced microstructure evolution, microfracture, and microvoid nucleation are examples of applications for which accurate stress and strain fields are required. A characteristic feature of these simulations is that the problem domain is simple (typically a rectilinear representative volume element (RVE)), but the evolution of internal topological features is extremely complex. Traditionally, the finite element method (FEM) is used for elasticity calculations; FEM is nearly ubiquituous due to (1) its ability to handle meshes of complex geometry using isoparametric elements, and (2) the weak formulation which eschews the need for computation of second derivatives. However, variable topology problems (e.g. microstructure evolution) require either remeshing, or adaptive mesh refinement (AMR) - both of which can cause extensive overhead and limited scaling. Block-structured AMR (BSAMR) is a method for adaptive mesh refinement that exhibits good scaling and is well-suited for many problems in materials science. Here, it is shown that the equations of elasticity can be efficiently solved using BSAMR using the finite difference method. The boundary operator method is used to treat different types of boundary conditions, and the reflux-free method is introduced to efficiently and easily treat the coarse-fine boundaries that arise in BSAMR. Examples are presented that demonstrate the use of this method in a variety of cases relevant to materials science: Eshelby inclusions, fracture, and microstructure evolution. Reasonable scaling is demonstrated up to $sim$4000 processors with tens of millions of grid points, and good AMR efficiency is observed.



قيم البحث

اقرأ أيضاً

The Landau collision integral is an accurate model for the small-angle dominated Coulomb collisions in fusion plasmas. We investigate a high order accurate, fully conservative, finite element discretization of the nonlinear multi-species Landau integ ral with adaptive mesh refinement using the PETSc library (www.mcs.anl.gov/petsc). We develop algorithms and techniques to efficiently utilize emerging architectures with an approach that minimizes memory usage and movement and is suitable for vector processing. The Landau collision integral is vectorized with Intel AVX-512 intrinsics and the solver sustains as much as 22% of the theoretical peak flop rate of the Second Generation Intel Xeon Phi, Knights Landing, processor.
Block-structured adaptive mesh refinement (AMR) provides the basis for the temporal and spatial discretization strategy for a number of ECP applications in the areas of accelerator design, additive manufacturing, astrophysics, combustion, cosmology, multiphase flow, and wind plant modelling. AMReX is a software framework that provides a unified infrastructure with the functionality needed for these and other AMR applications to be able to effectively and efficiently utilize machines from laptops to exascale architectures. AMR reduces the computational cost and memory footprint compared to a uniform mesh while preserving accurate descriptions of different physical processes in complex multi-physics algorithms. AMReX supports algorithms that solve systems of partial differential equations (PDEs) in simple or complex geometries, and those that use particles and/or particle-mesh operations to represent component physical processes. In this paper, we will discuss the core elements of the AMReX framework such as data containers and iterators as well as several specialized operations to meet the needs of the application projects. In addition we will highlight the strategy that the AMReX team is pursuing to achieve highly performant code across a range of accelerator-based architectures for a variety of different applications.
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial many-boxes-in-many-boxes mesh hierarchi es and massive parallelism through the Message Passing Interface (MPI). GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3+1 setting, whilst also significantly simplifying the process of setting up the mesh for these problems. We show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.
We have developed a simulation code with the techniques which enhance both spatial and time resolution of the PM method for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive mesh refinement (AMR) technique sub divides the cells which satisfy the refinement criterion recursively. The hierarchical meshes are maintained by the special data structure and are modified in accordance with the change of particle distribution. In general, as the resolution of the simulation increases, its time step must be shortened and more computational time is required to complete the simulation. Since the AMR enhances the spatial resolution locally, we reduce the time step locally also, instead of shortening it globally. For this purpose we used a technique of hierarchical time steps (HTS) which changes the time step, from particle to particle, depending on the size of the cell in which particles reside. Some test calculations show that our implementation of AMR and HTS is successful. We have performed cosmological simulation runs based on our code and found that many of halo objects have density profiles which are well fitted to the universal profile proposed by Navarro, Frenk, & White (1996) over the entire range of their radius.
Wildland fires are complex multi-physics problems that span wide spatial scale ranges. Capturing this complexity in computationally affordable numerical simulations for process studies and outer-loop techniques (e.g., optimization and uncertainty qua ntification) is a fundamental challenge in reacting flow research. Further complications arise for propagating fires where a priori knowledge of the fire spread rate and direction is typically not available. In such cases, static mesh refinement at all possible fire locations is a computationally inefficient approach to bridging the wide range of spatial scales relevant to wildland fire behavior. In the present study, we address this challenge by incorporating adaptive mesh refinement (AMR) in fireFoam, an OpenFOAM solver for simulations of complex fire phenomena. The AMR functionality in the extended solver, called wildFireFoam, allows us to dynamically track regions of interest and to avoid inefficient over-resolution of areas far from a propagating flame. We demonstrate the AMR capability for fire spread on vertical panels and for large-scale fire propagation on a variable-slope surface that is representative of real topography. We show that the AMR solver reproduces results obtained using much larger statically refined meshes, at a substantially reduced computational cost.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا