ﻻ يوجد ملخص باللغة العربية
Room-temperature metallicity of lightly doped SrTiO$_3$ is puzzling, because the combination of mobility and the effective mass would imply a mean-free-path (mfp) below the Mott Ioffe Regel (MIR) limit and a scattering time shorter than the Planckian time ($tau_P=hbar/k_BT$). We present a study of electric resistivity, Seebeck coefficient and inelastic neutron scattering extended to very high temperatures, which deepens the puzzle. Metallic resistivity persists up to 900 K and is accompanied by a large Seebeck coefficient whose magnitude (as well as its temperature and doping dependence) indicates that carriers are becoming heavier with rising temperature. Combining this with neutron scattering data, we find that between 500 K and 900 K, the Bohr radius and the electron wave-length become comparable to each other and twice the lattice parameter. According to our results, between 100 K and 500 K, metallicity is partially driven by temperature-induced amplification of the carrier mass. We contrast this mass amplification of non-degenerate electrons with the better-known case of heavy degenerate electrons. Above 500 K, the mean-free-path continues to shrink with warming in spite of becoming shorter than both the interatomic distance and the thermal wavelength of the electrons. The latter saturates to twice the lattice parameter. Available theories of polaronic quasi-particles do not provide satisfactory explanation for our observations.
Monodispersed strontium titanate nanoparticles were prepared and studied in detail. It is found that ~10 nm as-prepared stoichiometric nanoparticles are in a polar structural state (with possibly ferroelectric properties) over a broad temperature ran
The temperature dependent Hall mobility data from La-doped SrTiO3 thin films has been analyzed and modeled considering various electron scattering mechanisms. We find that a ~6 meV transverse optical phonon (TO) deformation potential scattering mecha
The surface composition of polycrystalline niobium-doped strontium titanate (SrTiO3 : Nb) is studied using X-ray photoelectron emission microscopy (XPEEM) for many grain orientations in order to characterise the surface chemistry with high spatial re
Room temperature ferromagnetism was characterized for thin films of SrTi$_{0.6}$Fe$_{0.4}$O$_{3-{delta}}$ grown by pulsed laser deposition on SrTiO$_{3}$ and Si substrates under different oxygen pressures and after annealing under oxygen and vacuum c
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was intr