ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-parallel X-ray microbeam obtained using a parabolic monocapillary X-ray lens with an embedded square-shaped lead occluder

38   0   0.0 ( 0 )
 نشر من قبل Peng Zhou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A parabolic monocapillary X-ray lens (PMXRL) is designed to effectively constrain a laboratory point X-ray source into a parallel beam. A square-shaped lead occluder (SSLO) is used to block direct X-rays in the PMXRL. To design the PMXRL, we use Python to simulate the conic parameter (p = 0.001 mm) of the lens and then use a drawing machine to draw a corresponding lens (p = 0.000939 mm) with a total length of 60.8 mm. We place the SSLO at the lens inlet for optical testing. The results show that the controlled outgoing beam has a divergence of less than 0.4 mrad in the range of 15-45 mm of the lens outlet, which achieves excellent optical performance in X-ray imaging methodology. The design details are reported in this paper.

قيم البحث

اقرأ أيضاً

The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical sensitivity. The penetrating power that makes x-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques that have enabled the fabrication of a series of highly focusing x-ray lenses, known as wedged multi layer Laue lenses. Improvements to the lens design and fabrication technique demands an accurate, robust, in-situ and at-wavelength characterisation method. To this end, we have developed a modified form of the speckle-tracking wavefront metrology method, the ptychographic x-ray speckle tracking method, which is capable of operating with highly divergent wavefields. A useful by-product of this method, is that it also provides high-resolution and aberration-free projection images of extended specimens. We report on three separate experiments using this method, where we have resolved ray path angles to within 4 nano-radians with an imaging resolution of 45nm (full-period). This method does not require a high degree of coherence, making it suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology.
Accurate characterization of the inner surface of X-ray monocapillary optics (XMCO) is of great significance in X-ray optics research. Compared with other characterization methods, the micro computed tomography (micro-CT) method has its unique advant ages but also has some disadvantages, such as a long scanning time, long image reconstruction time, and inconvenient scanning process. In this paper, sparse sampling was proposed to shorten the scanning time, GPU acceleration technology was used to improve the speed of image reconstruction, and a simple geometric calibration algorithm was proposed to avoid the calibration phantom and simplify the scanning process. These methodologies will popularize the use of the micro-CT method in XMCO characterization.
A multi-prism lens (MPL) is a refractive x-ray lens with one-dimensional focusing properties. If used as a pre-object collimator in a scanning system for medical x-ray imaging, it reduces the divergence of the radiation and improves on photon economy compared to a slit collimator. Potential advantages include shorter acquisition times, a reduced tube loading, or improved resolution. We present the first images acquired with an MPL in a prototype for a scanning mammography system. The lens showed a gain of flux of 1.32 compared to a slit collimator at equal resolution, or a gain in resolution of 1.31-1.44 at equal flux. We expect the gain of flux in a clinical set-up with an optimized MPL and a custom-made absorption filter to reach 1.67, or 1.45-1.54 gain in resolution.
Advances in the development of free-electron lasers offer the realistic prospect of high-resolution imaging to study the nanoworld on the time-scale of atomic motions. We identify X-ray Fourier Transform holography, (FTH) as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array (URA) placed next to the sample, multiplies the efficiency of X-ray FTH by more than one thousand (approaching that of a perfect lens) and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell at a soft X-ray free-electron-laser, where illumination by a single 15 fs pulse was successfully used in producing the holographic image. We expect with upcoming hard X-ray lasers to achieve considerably higher spatial resolution and to obtain ultrafast movies of excited states of matter.
With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا