ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms

83   0   0.0 ( 0 )
 نشر من قبل Jacob Covey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Trapped neutral atoms have become a prominent platform for quantum science, where entanglement fidelity records have been set using highly-excited Rydberg states. However, controlled two-qubit entanglement generation has so far been limited to alkali species, leaving the exploitation of more complex electronic structures as an open frontier that could lead to improved fidelities and fundamentally different applications such as quantum-enhanced optical clocks. Here we demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms. We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values. Our results pave the way for novel applications, including programmable quantum metrology and hybrid atom-ion systems, and set the stage for alkaline-earth based quantum computing architectures.



قيم البحث

اقرأ أيضاً

166 - B. Olmos , D. Yu , Y. Singh 2012
Alkaline-earth-metal atoms exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the 3P_0-3D_1-transition of the triplet manifold. In case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.7 mu m and a dipole moment of 2.46 Debye, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states 3P_0 and 3D_1. This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tuneable disorder and anisotropy. We derive the many-body Master equation, investigate the dynamics of excitation transport and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.
We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkalineearth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope 6Li with evaporatively cooled bosonic 174Yb and, separately, fermionic 173Yb.Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a6Li-174Yb| = 1.0pm0.2 nm and |a6Li-173Yb| = 0.9pm0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.
We propose and demonstrate a new magneto-optical trap (MOT) for alkaline-earth-metal-like (AEML) atoms where the narrow $^{1}S_{0}rightarrow$$^{3}P_{1}$ transition and the broad $^{1}S_{0}rightarrow$$^{1}P_{1}$ transition are spatially arranged into a core-shell configuration. Our scheme resolves the main limitations of previously adopted MOT schemes, leading to a significant increase in both the loading rate and the steady state atom number. We apply this scheme to $^{174}$Yb MOT, where we show about a hundred-fold improvement in the loading rate and ten-fold improvement in the steady state atom number compared to reported cases that we know of to date. This technique could be readily extended to other AEML atoms to increase the statistical sensitivity of many different types of precision experiments.
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant opt ical driving and the establishment of a dark state under conditions of electromagnetically induced transparency (EIT). Analyzing the driven dissipative dynamics of the atomic gas, we show that the interplay between coherent light coupling, radiative decay and strong Rydberg-Rydberg atom interactions leads to the emergence of sizeable effective interactions while providing remarkably long coherence times. The latter are studied experimentally in a cold gas of strontium atoms for which the proposed scheme is most efficient. Our measured atom loss is in agreement with the theoretical prediction based on binary effective interactions between the driven atoms.
Apropos to the growing interest in the study of long-range interactions which for their applications in cold atom physics, we have performed theoretical calculation for the two-dipole $C_6$ and three-dipole $C_9$ dispersion coefficients involving alk aline-earth atoms with alkaline-earth atoms and alkaline-earth ions. The $C_6$ and $C_9$ coefficients are expressed in terms of the dynamic dipole polarizabilities, which are calculated using relativistic methods. Thereafter, the calculated $C_6$ coefficients for the considered alkaline-earth atoms among themselves are compared with the previously reported values. Due to unavailability of any other earlier theoretical or experimental results, for the $C_6$ coefficients for alkaline-earth atoms with alkaline-earth ions and the $C_9$ coefficients, we have performed separate fitting calculations and compared. Our calculations match in an excellent manner with the fitting calculations. We have also reported the oscillator strengths for the leading transitions and static dipole polarizabilities for the ground states of the alkaline-earth ions, i.e., Mg$^+$, Ca$^+$, Sr$^+$, and Ba$^+$ as well as the alkaline-earth atoms, i.e., Mg, Ca, Sr, and Ba. These, when compared with the available experimental results, show good agreement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا